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Abstract. We consider the problem of imaging extended reflectors in waveguides

using partial array aperture, i.e., an array that does not span the whole depth of

the waveguide. To image we employ a method that back-propagates a weighted

modal projection of the usual array response matrix. The challenge in this setup

is to correctly define this projection matrix in order to maintain some nice energy

concentration properties for the imaging method that were obtained previously in [36]

for the full aperture case. We propose in this paper a way for achieving this and study

the properties of the resulting imaging method.
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1. Introduction

We consider the problem of detecting and imaging extended impenetrable obstacles in a

finite in depth and infinite in range two-dimensional acoustic waveguide. Sound pulses

are generated by a vertical array of transducers with partial aperture, i.e., an array that

does not span the whole depth of the waveguide. The term extended is used to indicate

that the typical size of the reflectors is comparable to the acoustic wavelength. The

current work is based, and extends to the partial-aperture array case, the methodology

that we have proposed in [36], where we have studied the problem of imaging extended

scatterers in waveguides selectively using a vertical full-aperture array of transducers.

We have in mind applications in underwater acoustics where sound waves are used to

probe the sea and their echoes are recorded and analysed in order to detect submerged

objects. The marine environment that we consider is modelled as an infinite strip of

constant depth. Although this is a simplified and rather ideal model of a marine acoustic

environment it still carries and exhibits the main features and challenges of acoustic wave

propagation in the sea.

We now present the main features of the imaging problem that we are interested in.

We assume that an array consisting of N transducers is set vertically in the waveguide.

At first, each element of the array acts as a point source and emits a sound pulse, whose

echoes are recorded in all the elements of the array that now act as receivers. In this way

it is formed an N×N matrix Π̂; this is the so-called array response matrix. Specifically,

we shall consider that we are given the array response matrix for the scattered field,

where this is obtained, as usually, by subtracting the incident field from the total field.

Given these data, we want to create images of parts of the waveguide that would assist

us to decide whether a scatterer is present or not. The usual procedure in imaging

is summarised in the following steps: a) We determine a bounded subdomain of the

waveguide that is usually called the search domain, b) we discretize the search domain,

and c) in each node of the search domain we associate the value of an imaging functional.

Then the graph of this functional forms the image that we are looking for, where,

usually, peaks that are related with the functional’s maxima indicate the presence of the

scatterer. Examples of widely used imaging techniques include the Kirchhoff Migration

functional (KM) (see [4, §9]), the matched field functional (see [18]), the linear sampling

[8, 9, 21] and the factorization method [2].

The problem of detecting obstacles in waveguides has been studied extensively

using various techniques in several configurations related to applications such as

marine acoustics, inspection of underground pipes, etc. Indicatively, for mathematical

investigation of inverse scattering problems in homogeneous acoustic waveguides with

horizontal or planar boundaries we refer to [16, 11, 26], see also [10] and the references

therein. Of course, to image accurately an extended reflector one should take full

advantage of information that emanates from its edges. This is the concept of selective

imaging for extended reflectors that was inspired from the concept of selective focusing,

and the associated well-known DORT method, [24, 27], which allows one to derive images
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that focus selectively on each one of several point (or small) scatterers in a medium. In

[6], the so-called subspace projection method was used to image selectively the edges

of extended scatterers in free space. In the same spirit, in our earlier work, [36], we

have proposed an alternative functional, that was based on Kirchhoff migration, and on

a weighted modal projection of the array response matrix denoted by P̂, to selectively

image extended scatterers in waveguides using an active array of sensors which spans

the whole depth of the waveguide.

In this paper we briefly review our imaging approach and consider a simplified model

problem where the scatterer is a vertical one-dimensional perfect reflector; from now on

will be referred to as screen. The object is twofold: First, we pursue the analysis of

the spectral properties of the weighted modal projection of the array response matrix,

P̂, and we investigate the relation between P̂ and its singular vectors, with the well

known prolate matrix and the prolate spheroidal wave functions, respectively, which

have been analyzed in a series of outstanding papers by Slepian, Pollak and Landau,

[34, 19, 20, 31, 32]. Second, the screen model problem and the properties of the singular

vectors of P̂ are used in order to appropriately modify our approach to handle the case of

a partial-aperture array. This is of practical importance in applications since often the

arrays that are used do not span the whole depth of the waveguide, see, e.g., [15] for a

shallow-water experiment conducted in the Mediterranean Sea. However, the extension

from full- to partial-aperture array case is not at all straightforward since key properties,

like the orthonormality of the vertical eigenfunctions along the array, do not hold any

more. We therefore propose an appropriate definition of the weighted projected matrix

P̂ for the partial aperture case and study the performance of the corresponding imaging

functional for the screen model problem as we decrease the array aperture.

The paper is organised as follows. In Section 2 we formulate the imaging problem

and briefly review our selective imaging approach. In Section 3 we study the screen

model problem in the full-aperture case and establish the relation with the prolate

spheroidal wave functions. In Section 4 we appropriately modify our approach to handle

the case of a partial-aperture array. In Section 5 we present the outcome of some

numerical simulations that we have performed for more general extended scatterers

such as a square and a disc. Moreover, we test our methodology in a waveguide with

depth-dependent sound speed profile.

2. Formulation of the problem

In this work, we study the problem of imaging extended reflectors in an infinite,

homogeneous two-dimensional acoustic waveguide with horizontal boundaries, using an

array A that consists of N transducers that can act both as sources and receivers. The

term ‘extended’ indicates that the size of the scatterer is comparable to the acoustic

wavelength. The array is set vertically in the waveguide and may or may not span the

whole depth of the waveguide; we refer to the latter case as partial aperture imaging.

Specifically, our infinite waveguide is R × [0, D] in Cartesian coordinates (z, x), where
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the horizontal z–axis denotes the range and the vertical x–axis the depth (assumed to

be positive downward). A single scatterer, denoted by O, is located in the waveguide,

see Figure 1. Then the total acoustic pressure field ptot satisfies the wave equation

∆ptot(t, ~x)− 1

c20

∂2ptot(t, ~x)

∂t2
= −f(t, ~x), (1)

where the source term models a point-like source with time harmonic dependence. A

Dirichlet (pressure release) condition is imposed on the two horizontal boundaries, and

we assume a suitable radiation condition, and that ptot(t, ~x) = 0 for t ≤ 0. Moreover,

the scatterer O is considered to be acoustically hard, hence a homogeneous Neumann

condition is imposed on ∂O. Taking the Fourier transform

x
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Figure 1: Schematic depiction of the waveguide imaging problem.

p̂ tot(ω, ~x) =

∫
eiωtptot(t, ~x) dt,

we obtain from (1) the Helmholtz equation

−∆p̂ tot(ω, ~x)− k2p̂ tot(ω, ~x) = f̂(ω, ~x), (2)

where k = ω/c0 is the real wavenumber, ω is the angular frequency, and λ = 2π/k is

the wavelength.

In what follows we shall also need the outgoing Green’s function Ĝ(~x, ~xs) of the

Helmholtz operator due to a point source located at ~xs = (zs, xs), where ~x = (z, x) ∈
R × (0, D). Here Ĝ is expressed in terms of its usual normal mode representation,

[17, 26],

Ĝ(~x, ~xs) =
i

2

∞∑
n=1

1

βn
eiβn|z−zs|Xn(x)Xn(xs), (3)

where {µn, Xn}n=1,2,... are the eigenvalues and corresponding orthonormal eigenfunctions

of the two-point vertical eigenvalue problem

X ′′(x) + µX(x) = 0, x ∈ (0, D) and X(0) = X(D) = 0,

and are given by

µn = (nπ/D)2, Xn(x) =
√

2/D sin(
√
µnx), n = 1, 2, . . . . (4)
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Moreover, the βn are the horizontal wavenumbers, defined as

βn =

{ √
k2 − µn, 1 ≤ n ≤M,

i
√
µn − k2, n ≥M + 1.

(5)

where we have assumed that for each frequency there exists an index M such that

µM < k2 < µM+1.

The first M eigenvalues correspond to the propagating modes, while the rest to the

evanenscent modes that decay exponentially with range.

2.1. Array imaging setup

We assume that the data that we have in our disposal are tabulated in the so-called

array response matrix, henceforth denoted as Π̂; an N ×N complex matrix whose (r, s)

element is the Fourier transform of the echoes recorded on the r-th transducer (acting

as a receiver) due to a δ–function impulse generated by the s-th transducer (acting as

a source), for a given frequency ω. Specifically, we shall consider that we are given the

array response matrix for the scattered field formulated, as usual, by subtracting the

incident field from the total field. We also assume that the transducers are distributed

uniformly on the array, and that the array is quite dense, i.e. the inter-element array

distance h is appropriately small.

In this work we are mainly going to make use of an imaging functional, denoted by

ĨKM, that was introduced in [36] and is defined as

ĨKM(~y s, ω) = − 1

4h2

M∑
m,n=1

e−i(βm+βn)|za−zs|Xn(xs)Xm(xs)P̂mn(ω), (6)

for a single frequency ω, where ~y s = (zs, xs) denotes a point in our search domain S
and za is the location in range of our array. The M ×M matrix P̂ is a weighted modal

projection of the array response matrix, and in the full array case (A = [0, D]) is given

by the relation

P̂mn(ω) = βmβn

∫
A

dxs

∫
A

dxr Π̂(~xs, ~xr, ω)Xm(xs)Xn(xr), m, n = 1, . . . ,M. (7)

We use for our functional the symbol ĨKM to distinguish it from the classical Kirchhoff

migration (KM) functional, [5, 7],

IKM(~y s, ω) =
N∑
r=1

Ĝ(~xr, ~y
s, ω)

N∑
s=1

Π̂(~xr, ~xs, ω) Ĝ(~xs, ~y
s, ω), (8)

where Ĝ is the Green’s function defined in (3), and the bars denote complex conjugation.

Furthermore, we may reconstruct specific parts of the scatterer by means of a

selective imaging technique, called the subspace projection method [6], which is based
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on the singular value decomposition (SVD) of the matrix P̂(ω). To be more specific, let

us write the SVD of P̂(ω) in the form:

P̂(ω) =

ρ∑
i=1

σi UiV∗i ,

where σ1 ≥ . . . ≥ σρ > σρ+1 = . . . = σM = 0 are the singular values, ρ = rank(P̂(ω)),

and Ui, Vi are the left and right singular vectors, respectively.

This allows us to create a filtered version of the matrix P̂(ω) as

D[P̂(ω)] =

ρ∑
i=1

diσi UiV∗i ,

where the di’s may be viewed as filter weights. In our case, di = 1 or 0, depending

whether we take the i−th singular vector into account in the computation of the filtered

version of the matrix, or not. Based on this filtered version of the matrix P̂, we define

the functionals

ĨKM,f(~y s, ω) = − 1

4h2

M∑
m,n=1

e−i(βn+βm)|za−zs|Xn(xs)Xm(xs)
(
D[P̂(ω)]

)
mn
, (9)

and

ĨKM
J (~y s, ω) = − 1

4h2

M∑
m,n=1

e−i(βn+βm)|za−zs|Xn(xs)Xm(xs)
(
σJ(ω)UJ(ω)V∗J(ω)

)
mn
, (10)

where ĨKM
J corresponds to the case where we project just on the J-th singular vector,

i.e. dJ = 1 and di = 0 for all i 6= J .

3. A model problem: Connection with band-limited functions

In this section we revisit a simplified model problem that we have introduced in [36].

There are two main reasons for that: First, we provide some new results that allow us

to clarify further the performance of ĨKM in this ideal setting, and, second, this model

problem will serve as a guide in order to extend the applicability of our imaging approach

in the case of the partial array; this will be pursued in the next section.

Now we briefly present the model problem and summarize some known results that

will be useful to us in what follows. In the waveguide described in the previous section

we assume that the array passes through the x axis, and that N transducers that span

the whole depth of the waveguide are located equidistantly at depths xi = ih, 1 ≤ i ≤ N ,

where h := D/(N + 1). The scatterer T is a one-dimensional vertical mirror, a ‘screen’,

located at range z = L, see Figure 2. Let the coordinates of its endpoints be (L, α) and

(L, β), hence its width equals b = β − α, and let us denote by C the vertical section of

the waveguide at range z = L, i.e., C := {(L, x) : 0 ≤ x ≤ D}.
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Figure 2: Sketch of a one-dimensional vertical scatterer (‘screen’) T and basic notation.

We assume that each point of the target has unit reflectivity, thus the Born

approximation allows us to ideally express the (r, s)-entry of the array response matrix

as

Π̂(~xr, ~xs, ω) = k2
∫
T
Ĝ(~y, ~xr)Ĝ(~y, ~xs) dx, (11)

where the source is now located at ~xs = (0, xs), the receiver at ~xr = (0, xr),

s, r ∈ {1, 2, . . . , N}, ~y = (L, x), x ∈ [α, β], and Ĝ is the Green’s function defined in (3).

Recall that µn, Xn are the eigenvalues and corresponding orthonormal eigenfunctions of

the operator −d2/dx2 in H2(0, D) ∩H1
0 (0, D), defined in (4), and βn are the horizontal

wavenumbers defined in (5).

In the following we suppress the multiplicative constant k2, we insert (3)

into (11) and take into account that when L is sufficiently large the terms

(e−
√
µm−k2L)/

√
µm − k2, for m ≥ M + 1, are practically zero. These allow us to

approximate the array response matrix as

Π̂(~xr; ~xs, ω) = −1
4

M∑
m,n=1

eiβmL

βm
Xm(xs)Xn(xr)

eiβnL

βn

∫ α

β

Xm(x)Xn(x)dx, (12)

or, equivalently, as a matrix product of the form

Π̂ = −1
4
V Dβ QAM QDβ V

T , (13)

where

Dβ = diag(1/β1, . . . , 1/βM), Q = diag(eiβ1L, . . . , eiβML), (14)

V is the N ×M matrix with

Vk` = X`(xk), k = 1, . . . , N, ` = 1, . . . ,M, (15)

and AM is the matrix with entries

amn =

∫ β

α

Xm(x)Xn(x)dx, m, n = 1, 2, . . . ,M. (16)
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Now, the orthonormality of the eigenfunctions {Xn}n=1,2,... implies that the matrix

P̂ that is defined in (7), and is employed in the definition (6) of the functional ĨKM, is

related to the matrix AM as follows

P̂ = −1

4
QAMQ, (17)

where Q is the diagonal matrix diag(eiβ1L, . . . , eiβML). Hence, up to a multiplicative

constant, P̂ is unitarily equivalent to AM .

Therefore, the spectral properties of AM play an important role in understanding

the behavior of the imaging functional ĨKM. One may easily check that AM is a

real, symmetric Toeplitz-minus-Hankel matrix, with its generating function being the

indicator function of T , [36]. Specifically,

AM = TM −HM , where TM := (t`−m)M`,m=1, HM := (t`+m)M`,m=1,

and

tm =
1

D

∫ D

0

1T (x) cos
mπx

D
dx, (18)

where 1T (x) is the indicator function of T .

Now, let us introduce some notation that is fairly standard, see e.g. [35, 1]: Let J
be the flip matrix (i.e. the matrix that has ones on the secondary diagonal and zeros

elsewhere). Then, a vector x ∈ Rn is called symmetric if Jx = x and skew-symmetric

if Jx = −x. Moreover, an eigenvalue ν of a matrix T is defined to be even (odd) if T

has a symmetric (skew-symmetric) ν–eigenvector.

Classical results by Szegő, [13, pp. 64-65], and Trench, [35], allow us to characterize

fully the eigenvalues of AM ; for details we refer to [36]. Specifically, the eigenvalues of

AM are the odd eigenvalues of the (2M + 1) × (2M + 1) Toeplitz matrix T2M+1, and

they are clustered emphatically near 0 and 1. To be precise, if u = (u1, . . . , uM)T is an

orthonormal eigenvector of AM that corresponds to an eigenvalue ν, then

v = 2−1/2

 −Ju0

u

 = 2−1/2(−uM , . . . ,−u1, 0, u1, . . . , uM)T (19)

is an orthonormal skew-symmetric ν–eigenvector of T2M+1, and vice versa. We shall say

that eigenvectors that correspond to eigenvalues that are close to 1 comprise the signal

subspace, those that correspond to eigenvalues that are close to 0 comprise the noise

subspace, and, finally, the eigenvectors that correspond to intermediate eigenvalues form

the transient subspace. Moreover, we may estimate the number of ‘significant’ singular

values for the matrix AM : It is approximately equal to[
M

b

D

]
≈
[

2b

λ

]
. (20)

where λ is the wavelength, M =
⌊
2D
λ

⌋
is the number of propagating modes in the

waveguide, and b is the width of the screen. Recalling that the cross-range resolution

is λ/2, we conclude that the rank of the matrix AM is roughly equal to the size of the
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object divided by the ‘array resolution’. This result was already known to hold in the

free-space case (see [6, §4.5.2]).

Next, we consider the imaging functional ĨKM
J evaluated at a search point ~y s =

(L, xs) that is located at the correct range L. Note that the subscript J indicates that

for selective imaging only the J-th singular vector is employed in the approximation of

the matrix P̂. Then, from (10) and (17) we have that

ĨKM
J (~y s) = σJ

(
1

4h

M∑
n=1

uJnXn(xs)

)2

= (8Dh2)−1σJ

(
M∑
n=1

uJn sin
nπxs

D

)2

,(21)

where uJ = (uJ1 , u
J
2 , . . . , u

J
M)T is the singular vector of AM that corresponds to the

singular value σJ . Hence, the ĨKM
J functional at the correct range is in fact, up to a

constant, the square of the trigonometric polynomial

pJ(x) = (2/D)1/2
M∑
n=1

uJn sin
nπx

D
. (22)

The orthonormality of the vertical eigenfunctions and a one line calculation imply that

‖pJ‖2L2[α,β]

‖pJ‖2L2[0,D]

=

∫ β
α
p2J(x) dx∫ D

0
p2J(x) dx

=

∑M
n,m=1(AM)mnu

J
nu

J
m∑M

m=1(u
J
m)2

= σJ .

Therefore the trigonometric polynomial that corresponds to the first singular vector u1

and, consequently, the associated image computed at the correct range L, exhibit the

largest fractional concentration of energy in (α, β).

Now we are in a position to scrutinize the form of the singular vectors of the matrix

AM . In [36] we have derived some analytic expressions for those singular vectors which

correspond to singular values that are close to 1. In the remaining part of the section

we provide explicit characterizations for the singular vectors of AM depending on the

various positions of the screen.

3.1. A screen attached on the top of the waveguide

Assume that the screen is attached on the top of the waveguide, i.e. T = {(L, x) : x ∈
[0, b]}. In this case the eigenvectors of the matrix AM may be recovered through (19)

by the skew-symmetric eigenvectors of the matrix T2M+1 which satisfy

M∑
n=−M

1

(m− n)π
sin

(m− n)πb

D
uJn = νJu

J
m, m = −M, . . . ,M,

where skew-symmetry implies that uJ−i = −uJi , i = 1, . . . ,M . Therefore, in this case

{uJi }Mi=−M may be identified as a skew-symmetric discrete prolate spheroidal sequence

(DPSS), [32], (also known as a Slepian sequence) which is a discrete analog of the prolate

spheroidal wave function (PSWF) ψ2J−1, [34]. Specifically, ψn is the eigenfunction that

corresponds to the n-th eigenvalue of the Fredholm integral equation∫ 1

−1

sin c(x− y)

π(x− y)
ψn(y) dy = νnψn(x), x ∈ [−1, 1], (23)
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where, in our case, the so-called bandwidth parameter is c = 2πb/λ = bk, k being the

wavenumber. The PSWFs possess many interesting properties, see e.g. [34, 33, 23].

Here we just name two: The eigenvalues are discrete and form a decreasing sequence

ν0 > ν1 > . . . that tends to zero as n→∞, and the corresponding eigenfunctions ψn(x)

are even or odd with n.

Now, letting yn = λn
2D

(λ is the wavelength), we may interpret the trigonometric

polynomial pJ in (22) as a Riemann sum that approximates the integral

2
√

2D

λ

∫ 1

0

ψ2J−1(y) sin(ξy) dy =

√
2D

iλ

∫ 1

−1
ψ2J−1(y)eiξy dy

= γ2J−1ψ2J−1

(x
b

)
, x ∈ [0, D],

where ξ := 2πx/λ = kx, and the first equality holds since ψ2J−1 is an odd function

in [−1, 1], while the second equality reflects the interesting property that the Fourier

transform of a PSWF restricted to [−1, 1] is invariant except for a horizontal stretching,

[33, Eq. (24)]; note that γ2J−1 is independent of x.

In order to illustrate these conclusions we consider a waveguide with depth equal to

D = 200 m and constant sound speed equal to c0 = 1500 m/s. The frequency is equal

to 73 Hz, hence the wavelength λ ≈ 20.548 m, and the screen’s width equals b = 40 m.

Then, M = 19 modes propagate in the waveguide and according to (20) we expect AM
to possess four ‘significant’ singular values. Indeed, the first three lie close to 1, the

fourth is approximately 0.62, the fifth one is approximately equal to 0.04, while the rest

are less than 4×10−4 and decrease rapidly to zero. In Figure 3 we superimpose the graph

of the trigonometric polynomial (pJ(x))2 on the graph of the PSWF
(
ψ2J−1(

x
b
)
)2

, both

normalised with respect to their maximum values, for x ∈ [0, D], and for J = 1, 2, . . . , 6.

As expected, these functions for J = 1 to 4 are mainly supported in [0, b] = [0, 40],

while for J = 5 and 6 they are supported in the exterior of [0, b].

3.2. A screen attached on the bottom of the waveguide

In this case let T = {(L, x) : x ∈ [D − b,D]}. Then it is easy to check that the entries

of the matrix AM satisfy

amn =

∫ D

D−b
Xm(x)Xn(x) dx = (−1)m+n

∫ b

0

Xm(x)Xn(x) dx,

and, consequently, if u = (ui)
M
i=1 is a ν-eigenvector of AM when the screen is

attached on the top of the waveguide, then one may show that v := (vi)
M
i=1 =

((−1)i+1ui)
M
i=1 is a ν-eigenvector of AM when the screen is attached on the bottom

of the waveguide. Moreover, let us denote, for the moment, ptopJ (x) =
∑M

n=1 u
J
nXn(x) to

be the trigonometric polynomial for a screen attached on the top of the waveguide, and

pbotJ (x) =
∑M

n=1 v
J
nXn(x) to be the corresponding trigonometric polynomial for a screen

attached on the bottom of the waveguide. Then it is easy to show that

pbotJ (x) = ptopJ (D − x),
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Figure 3: The graph of (pJ(x))2 (dashed line printed in blue) superimposed on the graph

of
(
ψ2J−1

(
x
b

))2
(solid line printed in red), for x ∈ [0, 200]. (Both are normalised with

respect to their maximum values.) Top row: J = 1, 2, 3, bottom row: J = 4, 5, 6. The

frequency is f = 73 Hz, and the width of the screen b = 40 m.

which implies that the image created by the imaging functional ĨKM
J , at the correct range

L, is determined by the graph of the PSWF
(
ψ2J−1(

D−x
b

)
)2

, x ∈ [0, D].

3.3. A screen located in the interior of the waveguide

In this case let T = {(L, x) : x ∈ [α, β] ⊂ [0, D]}. Eq. (19) suggests, as before, that

the eigenvectors of AM are determined through the skew-symmetric eigenvectors of the

matrix T2M+1, where they now satisfy the system of equations

M∑
n=−M

1

(m− n)π

(
sin

(m− n)πβ

D
− sin

(m− n)πα

D

)
uJn = νJu

J
m, (24)

for m = −M, . . . ,M . Equations (24) may be viewed as the discrete analog of the

following integral equation

K1u(x) :=

∫ 1

−1

1

π(x− y)

(
sin

2πβ

λ
(x− y)− sin

2πα

λ
(x− y)

)
u(y) dy = νu(x), (25)

for x ∈ [−1, 1], where we have suppressed the index J for notational convenience.

Note that the kernel in (25) is more complicated than the sinc kernel appearing in

(23) that concerns the limiting case where the screen is attached on the top of the

waveguide. Eq. (25) has been studied in [29] where the authors consider a time–

frequency concentration problem for signals that have a prescribed bandwidth of the

form |w| ∈ [a, b] for 0 < a < b; thus the frequency interval is not connected any longer.

Moreover, for general values of α and β (α < β) the work of Morrison [25], and SenGupta
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et al. [29], indicates that there cannot be found a second or fourth-order self-adjoint

linear differential operator with polynomial coefficients that commutes with the integral

operator K1 defined in (25). The fact that in the case of Section 3.1 the corresponding

integral operator commutes with a quite simple second-order differential operator is

crucial for the analysis conducted by Slepian and his colleagues at Bell Laboratories,

[34, 19, 20, 31, 32].

Therefore we are not able to characterise completely the eigenfunctions of (25),

as was the case with the the eigenfunctions of (23) that were identified as PSWF’s.

Nevertheless, the integral operator K1 is a compact symmetric operator from L2[−1, 1]

to L2[−1, 1], hence its eigenvalues ν0 ≥ ν1 ≥ · · · ≥ νn ≥ · · · → 0, as n → ∞, while its

corresponding eigenfunctions are complete in L2[−1, 1], [29].

Working as in Section 3.1 we may view the trigonometric polynomial pJ(x) =

(2/D)1/2
∑M

n=1 u
J
n sin nπx

D
as an approximation of the integral

√
2D

λ
i

∫ 1

−1
eiξyu(y) dy, ξ = 2πx/λ = kx,

where u is an odd eigenfunction of the integral equation (25) that corresponds to the

eigenvalue σJ . Interestingly enough, one may follow the lines of SenGupta et al. in [29],

in order to prove that ∫ 1

−1
eiξyu(y) dy = Cv(x), x ∈ [0, D],

where v is a σJ–eigenfunction of the integral equation

K2v(x) :=

∫
J

sin k(x− y)

π(x− y)
v(y) dy = νv(x), (26)

for x ∈ J := [−β,−α] ∪ [α, β]. Here we stress the fact that in (26), J is the

disconnected interval [−β,−α]∪[α, β], while the kernel is a sinc function with bandwidth

parameter equal to the wavenumber. Note that K2 is also a compact symmetric operator

from L2(J ) to L2(J ), that has the same eigenvalues with (25), and its corresponding

eigenfunctions are complete in L2(J ), [29].

Hence, the output of the imaging functional ĨKM
J when it is evaluated at the correct

range (see (21)) is recovered by the graph of the eigenfunction of (26) that corresponds

to the eigenvalue σJ . Note that the domain of the eigenfunctions v is extended for values

of x outside J , as usual, by using the left hand side of (26), that is well defined for

x ∈ J , in order to define v for values of x that lie outside J . Specifically, let

v(x) =
1

ν

∫
J

sin k(x− y)

π(x− y)
v(y) dy, x 6∈ J .

These remarks are illustrated in Figure 4 where we plot superimposed the graph of p2J(x)

and the graph of the square of the corresponding eigenfunction of (26), normalised with

respect to their L∞–norms. All the physical parameters are the same as those used in
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Figure 4: The graph of (pJ(x))2 (dashed line printed in blue) superimposed on the

graph of the square of the corresponding eigenfunction of (26) (solid line printed in

red), for x ∈ [0, 200]. (Both are normalised with respect to their maximum values.) The

ordinates α = 60 and β = 100 are printed in green dashed lines. Top row: J = 1, 2, 3,

bottom row: J = 4, 5, 6. The frequency is f = 73 Hz, D = 200 m, and the width of the

screen b = 40 m.

Figure 3, while the ordinates of the screen’s endpoints are α = 60 m, β = 100 m, thus

the width of the screen is again b = 40 m.

As one may immediately verify there is very good agreement between the graphs

of p2J(x) and the corresponding eigenfunctions of (26) squared. Moreover, notice that,

for example, p21(x) that corresponds to the largest eigenvalue (approximately equal to

one) exhibits a peak around the midpoint of the screen, p24(x) that corresponds to an

eigenvalue ≈ 0.640 peaks near the endpoints of T , while p26(x) that corresponds to an

eigenvalue ≈ 0.025 is practically supported in the exterior of T .

Remark 1 We close this section with a discussion concerning possible generalizations

of the theory presented here:

(i) The theory for the considered model problem can be generalized to the three

dimensional case for a waveguide with a bounded rectangular cross-section. In

this case, to allow for exploiting tensor product expressions the array should be

planar and the equivalent of the one dimensional screen would be a two-dimensional

rectangular planar screen. Both the array and the screen should be perpendicular

to the horizontal direction which is assumed to be the direction of propagation.

(ii) Considering a general reflector geometry is more challenging. Indeed, we can always

write the matrix P̂ in the form of (17). This means that P̂ can be always decomposed

as a product of a unitary propagator matrix Q that transfers the field from the array

to the range of the reflector times the matrix AM that carries information about the
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reflector, times the same unitary matrix Q that now transfers the scattered field

from the reflector to the array. Therefore, the matrix P̂ is unitarily equivalent

to the matrix AM and information about the reflector can be obtained from the

singular value decomposition of P̂. Although, the structure of the matrix AM does

not have in general the exact Hankel-minus-Toeplitz form observed for the screen

model problem, we expect that the conclusions drawn from the model problem carry

over to more general reflector’s geometries. In particular, as our numerical results

suggest, information about the reflector’s location and shape can be obtained from

the singular vectors that correspond to the largest and intermediate singular values

with the first ones focusing to the bulk of the reflector and the second ones focusing

to its boundary.

4. Partial aperture

We have spent the previous section reviewing and analyzing the performance of the

imaging functional ĨKM in the screen model-problem under the assumption that the array

spans the whole depth of the waveguide. Our main interest in this article, however, is in

imaging extended reflectors with a partial array. In what follows, we therefore consider

the screen model-problem with an array that does not span the whole [0, D]. Then

the vertical eigenfunctions Xn are no longer orthonormal along the array, and one may

immediately check that P̂ as defined in (7) is no more unitarily equivalent to AM . This

of course affects the efficiency of ĨKM
J in selective imaging in the sense that we lose

the usual ‘ordering’ of images which implies that projection of P̂ on its first singular

vector exhibits focusing at the center of the reflector, while projecting on subsequent

significant singular vectors results in images that focus at the endpoints of the reflector,

[6, 36]. Even if we cast aside selectivity and concentrate in creating images with ĨKM

we will soon discover, as one would expect, that the efficiency of ĨKM deteriorates as

we decrease the length larr of the array. We illustrate this with the following example.

We consider a sound speed c0 = 1500 m/s, the reference frequency is f0 = 75 Hz, hence

the reference wavelength λ0 = 20 m, and the depth of the waveguide is taken equal

to D = 200 m. All the experiments shown here are performed for a single frequency

f = 73 Hz at which M = 19 modes propagate. The scatterer, i.e. the screen, is centered

at (L, x0) = (410, 100) m and its length is b = 40 m = 2λ0. The inter-element array

distance h = λ0/8 = 2.5 m, unless stated otherwise. In the leftmost subplot of Figure 5

we show the image we obtain with ĨKM for full array, while the other three subplots

from left to right are created with array length larr = 180, 140, and 100 m, respectively.

In all cases the length of the array is reduced symmetrically from both ends. Moreover,

to assess the noise level of an image, we define the Signal-to-Noise Ratio (SNR) by,

SNR =
max
~xs∈R
|ĨKM(~x s)|

max
~xs∈S\R

|ĨKM(~x s)|
,



C. Tsogka, D. Mitsoudis and S. Papadimitropoulos 15

where R is a subset of our search domain S that contains the reflector. In our tests

we define R as a 6λ0 × 6λ0 box with the scatterer lying at its center. The SNR value

can be used as a quantitative measure that corroborates the qualitative characteristics

of the image. In Figure 5, and in what follows, the boundary of R is drawn in red. As

it is evident from Figure 5, and the associated SNR values shown in the title of each

subplot, the quality of the image deteriorates as larr decreases.
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Figure 5: Imaging with ĨKM for the screen. The length of the array from left to right is

larr = 200, 180, 140, 100 m, respectively, the frequency equals f = 73 Hz and the width

of the screen b = 40 m.

Let us remark here that this is not a limitation of the particular imaging functional

and, in general, a deterioration of the imaging results is expected as the array aperture

decreases. Similar results not shown here are also obtained with the classical IKM

imaging functional. Next, we will propose an alternative definition of the matrix P̂ in

order to preserve the nice properties that we have observed in the full array case to the

case of the partial-aperture array as well.

4.1. Weighted projection of the array response matrix for the partial array case:

Motivation

Now, we shall present a way to construct a weighted projection of the array response

matrix in the case of the partial-aperture array. Our observations in Section 3

regarding the band-limited nature of the trigonometric polynomials with coefficients

the eigenvectors of the matrix AM lead us to consider the M ×M matrix with entries

(Aarr)mn =

∫
A
Xm(x)Xn(x)dx, m, n = 1, . . . ,M. (27)

Aarr is a real, symmetric Toeplitz-minus-Hankel matrix and possesses all the nice

properties that were described in Section 3. Let νj, j = 1, . . . ,M , be its eigenvalues and

wj = (wj1, w
j
2, . . . , w

j
M)T be the corresponding orthonormal eigenvectors. Moreover, let

W be the M×M orthogonal matrix W = (w1,w2, . . . ,wM), and sj be the trigonometric

polynomial

sj(x) =
M∑
i=1

wjiXi(x), j = 1, 2, . . . ,M, (28)

where wji are as above.



C. Tsogka, D. Mitsoudis and S. Papadimitropoulos 16

Next, we project the array response matrix Π̂ on the M trigonometric polynomials

sn, rather than on the first M vertical eigenfunctions Xn. Specifically, let Ŝ be the

M ×M matrix with entries

Ŝmn =
1

νmνn

∫
A

dxs

∫
A

dxr Π̂(~xs, ~xr, ω) sm(xs) sn(xr), (29)

where m,n = 1, . . . ,M . It is immediate to verify that∫
A
sk(x)Xm(x)dx = νk w

k
m, k,m = 1, . . . ,M. (30)

Replacing (12) and (28) into (29), and in view of (30), we arrive at the following

matrix identity

Ŝ = −1
4
W TDβ QAM QDβW. (31)

As a final step, note that W is an orthogonal matrix hence if we define

P̂ = D−1β W ŜW TD−1β . (32)

we may check that

P̂ = −1
4
D−1β W W T︸ ︷︷ ︸

IM

DβQAMQDβW W T︸ ︷︷ ︸
IM

D−1β = −1
4
QAMQ. (33)

So, by following the steps described above, one may end up with a matrix P̂ that (up to

the multiplicative constant −1/4) is unitarily equivalent to AM . Let us also note that

in the full array case the orthonormality of the Xn’s implies that Aarr is the identity

matrix, sj(x) = Xj(x) and W = IM , thus we recover the previous definition of P̂, see

(7).

4.2. Implementation aspects

We feel that the previous approach may be useful for theoretical purposes mainly. The

main reason for that hinges on the fact that the data that we have in our disposal is

the N2 values tabulated in Π̂. Hence the integrals over A in (30) have to be evaluated

numerically whereas the validity of (33) relies crucially on the fact that (30) holds. In

practice, (30) holds only approximately due to inherent errors in the course of numerical

integration; as a result those errors ‘pollute’ (33) as well.

In order to avoid these difficulties we propose the following implementation of

our method in order to work on the matrix level. To this end we consider the real,

symmetric matrix h(V TV ), where V is the N ×M matrix defined in (15). Let, also,

S be the M × N matrix with Sij = si(xj), i = 1, . . . ,M , j = 1, . . . , N , where si(xj)

is the i–th trigonometric polynomial defined in (28) evaluated at the depth of the j–

th transducer. Now, by abusing slightly the notation, νj and wj = (wj1, w
j
2, . . . , w

j
M)T

are the eigenvalues and corresponding orthonormal eigenvectors of the Gram matrix

h(V TV ). Notice that the scaling factor h is used here just to push the νi’s to cluster

near one and zero (instead of near h−1 and zero) as we shall see later.
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It is easy to show that

SV = h−1DνW
T , where Dν = diag(ν1, . . . , νM),

(a matrix equivalent of (30)), and since W is orthogonal we deduce that

WD−1ν SV = h−1IM

Therefore, if we define the matrix P̂ as

P̂ = D−1β W D−1ν S Π̂ST D−1ν W T D−1β ,

we get that

P̂ = −1
4
D−1β W D−1ν S V︸ ︷︷ ︸

h−1IM

DβQAMQDβ V
T ST D−1ν W T︸ ︷︷ ︸

h−1IM

D−1β = − 1
4h2
QAMQ,

so P̂ is again unitarily equivalent to AM (up to the multiplicative constant −1/(4h2)).

We summarize these in the following definition

Definition 4.1 Given the array response matrix Π̂ for the scattered field, we first

consider the M ×N matrix

S̃ = D−1ν S, (34)

where

Sij = si(xj), i = 1, . . . ,M, j = 1, . . . , N, and Dν = diag(ν1, . . . , νn),

and next, we define P̂ by

P̂ = D−1β W S̃ Π̂ S̃T W T D−1β . (35)

Then we use P̂ in ĨKM (as defined in (6)), i.e.,

ĨKM(~y s, ω) = − 1

4h2

M∑
m,n=1

e−i(βm+βn)|za−zs|Xn(xs)Xm(xs)P̂mn(ω),

for imaging.

In order to assess the performance of ĨKM, as defined above, we apply our

methodology in the test case that we have considered in the beginning of the present

section. In the leftmost subplot of Figure 6 we show ĨKM images for full array, while the

other three subplots correspond to array lengths larr = 180, 140, 100 m, respectively. In

all cases the length of the array is reduced symmetrically from both ends.
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Figure 6: Imaging with ĨKM for the screen, when larr = 200, 180, 140, 100 m, for

f = 73 Hz.
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Next, in Figure 7, we plot selective imaging results obtained with the functional

ĨKM
J , for J = 1, 2, 3, 4, when larr = 180 m. Selective imaging with ĨKM

J performs as if we

were using the full-aperture array; all four images are very good with high SNR > 1.9,

and projection on the first singular vector results in focusing on the middle of the screen

while projection on the second to fourth singular vectors provides information about the

location of its edges. These images remain identical until we reduce by half the length

of the array (symmetrically from both ends).
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Figure 7: Imaging with ĨKM
J for the screen, for J = 1, 2, 3, 4 when larr = 180 m, for

f = 73 Hz.

The results in Figures 6, 7 are in perfect agreement with the theory in this ideal

case; they are excellent and in some sense counter intuitive, since there is no loss of

information despite the fact that we decrease the array length. Note that this is certainly

not true for the functional that we have used to create the images in Figure 5, where

the quality of the images deteriorates as the array aperture decreases.

4.3. Numerical experiments: Partial-aperture array imaging for the model problem

4.3.1. The noiseless data case So far we have seen that for the screen model problem

and under the assumption that all arithmetic operations are exact (i.e. they are

performed with infinite precision), the spectral properties of P̂ (as defined by (35))

are determined by those of AM , thus we expect ĨKM to perform in exactly the same way

as if we were using a full-aperture array. However, in practice we use finite precision

arithmetic so we have to examine whether and how this affects the performance of our

method.

A quite obvious cause of potential numerical instabilities is the presence of the

reciprocals ν−1i of the eigenvalues of the matrix h(V TV ) in the definition of S̃, see

(34). Hence it is important to examine the behavior of the νi’s, and how it is related

to the length of the array A. An important remark in this direction is that h(V TV )

may be considered as an approximation of the M ×M matrix Toeplitz-minus-Hankel

matrix Aarr. Therefore we would expect νi to cluster near 0 and 1 and, specifically,

roughly [larr/(λ/2)] of them to lie near 1, and the rest M − [larr/(λ/2)] to approach zero.

Moreover, as larr decreases, more singular values tend to zero, and in fact h(V TV ) will

become practically singular as soon as its minimum eigenvalue νmin falls below a certain

threshold.
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In some cases there do exist theoretical bounds for the minimum eigenvalues of

Toeplitz matrices. For example, Serra in [30] shows that if T is an (n + 1) × (n + 1)

Toeplitz matrix with generating function a real integrable function on [−π, π], which is

strictly positive in a closed interval J ⊂ I and zero elsewhere, then for n sufficiently

large, and for any ε ∈ (0, t), its minimum eigenvalue λmin is bounded as

c1 (t− ε)n(n+1)/2 < λmin < c2 t
n,

where c1, c2 are positive constants (independent of n), and t is a constant less than one

that depends on the width of the interval J ; specifically t = sin2(|J |/4), see also [28]. In

our case, we may apply these bounds in the case where the array is attached on the top

of the waveguide. Then the generating function of the Toeplitz-minus-Hankel matrix

Aarr is the indicator function 1J̃(x) of J̃ = [−larr, larr], and the minimum eigenvalue of

Aarr is equal to the minimum odd eigenvalue of its associated (2M + 1) × (2M + 1)

Toeplitz counterpart. Hence, we expect its minimum eigenvalue to decrease to zero like

τ 2M , where

τ = sin2

(
πlarr
2D

)
.

As already said, we expect that the eigenvalues of h(V TV ) behave like those of Aarr. In

Figure 8 we plot (using a logarithmic scale on the vertical axis) the minimum eigenvalue

νmin of the M×M matrix h(V TV ) (computed in MATLAB) and the values predicted by

the bounds τ 2M and τ 2M(2M+1)/2 as larr decreases. As an indication of the relative error

due to floating point arithmetic we use the so-called machine epsilon ε (implemented

in MATLAB and printed as a blue dashed line in the figure). Here, the frequency

f = 73 Hz, D = 200 m, thus M = 19 modes propagate, and the array pitch is

h = 2.5 m ' λ/8. The results shown in Figure 8 suggest that the minimum eigenvalue

of h(V TV ) drops below ε when the length of the array is less than 120 m.
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Figure 8: The minimum eigenvalue of h(V TV ) (blue circles) vs. τn (red asterisks) and

τn(n+1)/2 (black diamonds) for f = 73 Hz and n = 2M , when we decrease the length of

the array from below.

In Figure 9 we plot the minimum eigenvalue of h(V TV ) as we decrease larr and for

various values of the array pitch h. In the left subplot the length of the array is reduced
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symmetrically with respect to the mid-depth of the waveguide, while in the right one

the lower part of the array is cut off. The different markers (also typed in different

colors) shown in Figure 9 correspond to arrays with different densities; the value of h

that corresponds to each marker is reported in the legend of the figure in terms of the

reference wavelength λ0 = 20 m. We observe that the decay rate is much faster in the

non-symmetric case (right subplot) than in the symmetric one (left). Moreover, the

density of the array seems to affect the rate at which νmin drops below ε; these results

indicate that the magnitude of νmin is stabilized with an inter-element array distance of

approximately λ0/8.
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Figure 9: Behavior of νmin when we decrease the length of the array symmetrically from

both ends (left subplot) and just from below (right subplot), for f = 73 Hz.

By inspecting the plots in Figure 9 we expect no loss in image resolution or signal

to noise ratio (SNR) in our images with ĨKM as long as νmin stays above some threshold

ε+. However, as νmin approaches machine ε, most likely one will experience numerical

instabilities. As a regularization procedure we may try the following filtering: Consider

some threshold ε+. Then if νc > ε+ > νc+1, for some c ∈ {1, . . . ,M}, we set 1/νi = 0,

for i ≥ c+1. Notice that the reciprocals ν−1i of these small eigenvalues, which are in fact

very big, multiply the lower (M−c)×N part of the matrix S; let us call it Sc. Intuitively

we expect the entries of Sc to be very small since, for example, the j-th row contains the

values of the trigonometric polynomial sj calculated on the receivers’ depths, and recall

that our results in Section 3 suggest that when νj is small then sj is mainly supported

on the exterior of A (see, for example, Figures 3 and 4 that exhibit the behavior of the

trigonometric polynomials with coefficients the eigenvectors of the matrix AM defined in

(16), and recall that the matrix h(V TV ) approximates Aarr defined in (27) which is of the

same form as AM). Indeed, one may prove that ‖Sc‖2F = (
∑M

i=c+1 νi)/h < (M − c)ε+/h,

where ‖·‖F is the Frobenius matrix norm, to give grounds to the proposed regularization

technique. Of course, in the case we employ this filtering technique we do not expect a

unitary equivalence relation between P̂ and AM to hold any more.

We clarify the above by giving some examples. We decrease the length of the

array at larr = 60 m (symmetrically from both ends ), i.e. the array covers 30% of
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the waveguide depth. In order to form P̂ we use a threshold ε+ = 10−15 that forces

the reciprocals of the last three eigenvalues of h(V TV ) to be equal to zero. One may

verify the good quality of the image shown on the top right corner of Figure 10 that is

obtained with the proposed filtering. On the top left corner we plot the singular values

of P̂. The bottom row in Figure 10 shows the corresponding results when we do not

use any filtering and demonstrates the catastrophic effect of roundoff errors during the

computation of P̂.
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Figure 10: Top: The singular values of P̂ (left) and the associated ĨKM image (right)

that we obtain with threshold ε+ = 10−15. Bottom: The same as in the top row but

without using ε+. Here larr = 60 m, h = λ0/8 and f = 73 Hz.

Figure 11 depicts selective imaging results with ĨKM
J , where again in the course

of constructing P̂ we employ the threshold ε+ = 10−15. Here, selective imaging with

ĨKM
J fails, in the sense that the usual ordering in focusing does not hold anymore. To be

precise, this means that we lose the property that when we project on the singular vector

that corresponds to the largest singular value we get an image that provides information

about the bulk of the object, while projection on the singular vectors that correspond

to smaller singular values carry information about its edges. This is something to be

expected since filtering prevents to establish a unitary equivalence relation between P̂
and AM. However, the images for J = 2, 3 and 4 still have good SNR and provide

useful information about the object.
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Figure 11: Imaging with ĨKM
J for the screen with ε+ = 10−15, for J = 1, 2, 3, 4, when

larr = 60 m, for h = λ0/8 and f = 73 Hz.

In order to push ĨKM to the limit for this model problem we decrease (symmetrically)

the length of the array to be equal to larr = 20 m (this is just 10% of the total waveguide

depth). In this case, we make the array denser by setting the pitch h = λ0/20 = 1.0 m.

The image shown in Figure 12 is generated with a threshold equal to ε+ = 10−15 that

removes the reciprocals of the last 8 singular values of h(V TV ). We observe that the

ĨKM image gives us very good information about the object, although its SNR value is

quite low, about 1.2, due to the presence of the small artifact that is visible on the right

side of the image.
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Figure 12: Imaging with ĨKM for the screen with ε+ = 10−15 when larr = 20 m, for

h = λ0/20 and f = 73 Hz.

We close this paragraph with a few remarks.

Remark 2 (i) In all results that we have shown thus far we have reduced the length of

the array symmetrically from both ends and we have placed the screen centered

in the mid-depth of the waveguide. We have experimented with various other

configurations altering the way we reduce the array and/or the position of the screen.

Our results suggest that in some cases we may have to use filtering for larger array

lengths than before. For example, when we reduce the length of the array from

below the eigenvalues of h(V TV ) decrease towards zero much faster, see Figure 9,

and indeed in this case we have to employ some threshold ε+ for larger arrays than

those reported in the examples shown here.
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(ii) One may try different approaches to construct a weighted projection of the array

response matrix in the partial array case. For example, we may define P̂ =

D−1β V + Π̂ (V T )+D−1β , where V + is the Moore-Penrose pseudoinverse of V . Then it

is immediate to check that in the screen model problem, and under the assumption

that all computations are performed with infinite precision, P̂ is unitarily equivalent

to AM . However, as we decrease the length of the array we still have to use a

regularized pseudoinverse that treats as zero any singular values of V less than

some suitable threshold.

(iii) So far we have seen that when we decrease larr beyond some level and we employ

some thresholding to the ν−1i the nice ‘ordering’ property of the selective imaging

functional ĨKM
J does not hold. However, in a post-processing stage, one may still

have some benefit in imaging using the functional ĨKM,f, see (9), where in the filtered

version of P̂ we may take into account those of its singular vectors that correspond

to ‘good’ ĨKM
J images.

4.3.2. Adding noise to the data In the previous subsection, we found that ĨKM seems

to work very well under ideal conditions that allow us to derive Π̂ analytically in the

special form (13). Now we shall examine the performance of our method under the

effect of measurement noise. Specifically, we model measurement noise, as in [6], adding

a noise matrix W (ω) with zero mean uncorrelated Gaussian distributed entries with

variance εpavg, i.e. Wr,s(ω) ∼ N (0, εpavg). Here the average power received per source

and receiver is given by

pavg =
1

N2
‖Π̂(ω)‖2F,

where ‖ · ‖F is the Frobenius matrix norm. The expected power of the noise W (ω) over

all receivers and sources is

E
[
‖W (ω)‖2F

]
= εN2 pavg.

Since the total power of the signal received over all receivers and sources is N2 pavg, the

Signal-to-Noise Ratio (SNR) in dB is −10 log10 ε.

In Figure 13 we superimpose the singular values of Π̂ and Π̂ + W when we add

noise of 10 dB to our data, and the array is reduced symmetrically to have length equal

to larr = 140 m. We use a linear scale for the y-axis in the left subplot and a log10 scale

in the right one. As one may immediately verify the largest singular values of Π̂ + W

remain close to those of Π̂, while the noise severely affects the smaller ones.
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Figure 13: The singular values of Π̂ and Π̂ +W using a linear scale for the y-axis (left)

and a log10 scale (right). Here larr = 140 m and f = 73 Hz.

Next, we present the outcome of some of the experiments that we have performed

with 10 dB SNR, keeping the rest of the parameters the same as in the previous sections.

We begin with an array with larr = 140 m. In Figure 14 we plot the singular values of

h(V TV ) using a linear scale for the vertical axis in the left subplot and a log10 scale

in the right one. Note that the smallest singular value is greater than 10−6, hence all

the singular values of h(V TV ) are well above the threshold ε+ = 10−15 that we have

used so far. However, as one may see in the top left subplot of Figure 15 the SVD of

P̂ does not follow the usual pattern. Specifically, the first singular value of P̂ is 133.2,

the second 57.9, while the rest are less than 1. This is an indication that something

goes wrong and, indeed, the corresponding image shown in the bottom left subplot is

just noise. In order to improve this unsatisfactory result we employ some threshold ε+

during the computation of S in order to remove gradually those ν−1i that correspond to

the smaller νi’s, one at a time. The ĨKM images obtained by removing those ν−1i that

correspond to the smallest one, or two, νi are also very bad and we do not show them

here. In the middle subplots of Figure 15 we present the singular values of P̂ (top) and

the corresponding ĨKM image (bottom) for a threshold ε+ = 10−2; with this value we

treat as zero the ν−1i that correspond to the smaller three νi’s, see Figure 14. Things

are also well by choosing ε+ = 5 · 10−2, thus setting one more ν−1i equal to zero.
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Figure 14: The singular values of h(V TV ) using a linear scale for the y-axis (left) and

a log10 scale (right). Here larr = 140 m and f = 73 Hz.
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Figure 15: Singular values of P̂ (top row) and ĨKM images (bottom row) for the screen,

without a threshold (left subplots) and with a threshold ε+ = 10−2 that removes 3

(middle subplots) and ε+ = 5 · 10−2 that removes 4 (right subplots) of the smallest ν−1i ,

respectively (compare with Figure 14). larr = 140 m, and f = 73 Hz.

Looking once again at Figure 14, and recalling the results of Section 3, we realise

that the choice of the threshold value ε+ = 5 · 10−2 does in fact dictate to project the

array response matrix Π̂ just on the trigonometric polynomials that are supported on

A; also recall that their number is expected to be roughly larr/(λ/2). Keeping this in

mind, we next examine whether in order to obtain good images for various lengths of

the array it suffices to compute P̂ using a threshold ε+ that excludes those trigonometric



C. Tsogka, D. Mitsoudis and S. Papadimitropoulos 26

polynomials with coefficients the eigenvectors of Aarr that belong to the noise subspace;

these are supported on the exterior of A. To this end, we plot in Figure 16 the singular

values of h(V TV ) (top line) and the corresponding ĨKM images (bottom line) for the

screen, with larr = 120 m (left subplots), larr = 100 m (middle subplots), and larr = 90 m

(right subplots). In all cases we take ε+ = 5 · 10−2 that removes 6, 8 and 8 of the

smallest ν−1i , respectively. As one may see, and as it is expected, the quality of the

images deteriorates as we decrease the length of the array but it remains acceptable

even if we place symmetrically in the waveguide an array that covers more or less the

half of its depth.
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Figure 16: Singular values of h(V TV ) (top row) and ĨKM images (bottom row) for the

screen, with larr = 120 m (left subplots), larr = 100 m (middle subplots), and larr = 90 m

(right subplots). In all cases ε+ = 5 · 10−2 that removes 6, 8 and 8 of the smallest ν−1i ,

respectively.

Finally, on both subplots of Figure 17, instead of using the whole matrix P̂, as it

is obtained with thresholding with ε+ = 5 · 10−2, we project on certain of its singular

vectors. On the left subplot larr = 100 m and we project on the second and third

singular vectors of P̂, while on the right one larr = 90 m and we project just on the

second singular vector. Both images exhibit better SNR compared to their counterparts

in Figure 16, albeit with a worse range resolution.
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Figure 17: ĨKM,f images for the screen, with larr = 100 m where we project on the second

and third singular vectors of P̂ (left subplot) and larr = 90 m where we project on the

second singular vector. In both cases P̂ was derived with ε+ = 5 · 10−2.

5. Numerical experiments

So far we have seen that the proposed definition of the projected array response matrix

P̂, see (35), leads to excellent imaging results in the ideal screen model problem even

for very small arrays. Of course, one may reasonably argue that this method is tailored

to that specific model problem, hence it is natural to ask how it performs when applied

in situations that deviate from the previously described ideal setting. To this end, in

the present section, we assess the performance of ĨKM with partial information for a

scatterer that is either square- or disc-shaped. Moreover, the array response matrix

for the scattered field Π̂sc is computed numerically by solving the full wave equation

(1) supplemented with appropriate initial and boundary conditions, with the aid of

Montjoie [22], a high-order finite element C++ code developed at INRIA.

We truncate the infinite in range waveguide with two perfectly matched layers

(PML) [3, 12], see Figure 18. One near the source ranging between −100 and 0 m,

and the other far from the source between 500 and 600 m. We found that the 100 m

PML width was effective to absorb outgoing waves at least for the frequency range

that we used. We discretize the resulting computational domain with quadrangles on

which the usual basis functions of the Qn family (Qn = span{x`ym, 0 ≤ `,m ≤ n}) are

used. Specifically, we use Q8 polynomials for the square scatterer, and Q12 for the disc.

Numerical quadrature is based on Gauss-Lobatto rules, and for time discretization we

employ a fourth-order Leap-Frog scheme.

The array imaging setup is similar to the one used in the previous section, with the

exception that now our vertical array is placed at za = 40 m, has a pitch h = 5 m and

spans the whole depth of the waveguide. Then we extract the array response matrix

for the partial array by removing appropriate lines and columns from the matrix that

corresponds to the full aperture array. The results shown in this section regard an array

that its length is reduced symmetrically from both ends, and a scatterer that is centered

in the mid-depth of the waveguide.



C. Tsogka, D. Mitsoudis and S. Papadimitropoulos 28

x

z

x = D

A

z = za

O

Str
an

sd
u
ce
r
ar
ra
y

(0, 0)

P
M

L

P
M

L

Figure 18: Sketch of a waveguide that is truncated near and far from the source with

two PML.

5.1. Constant sound speed

To begin with, we consider a constant sound speed c0 = 1500 m/s, and we assume

that the length of the array equals larr = 180 m. The singular values of h(V TV ) are

shown in the left subplot of Figure 19. They are all larger than 0.5 thus suggesting that

there is no need to employ some threshold in the computation of S̃. Indeed, the ĨKM

images for the square and the disc, that are shown in the middle and right subplots of

Figure 19, respectively, are both very good. The image for the square reconstructs the

left side of the scatterer, while for the disc it mainly focuses around the left endpoint of

its horizontal diameter.
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Figure 19: Singular values of h(V TV ) (left), imaging with ĨKM for the square (middle)

and the disc (right), when larr = 180 m, for f = 73 Hz.

In Figure 20, we present selective imaging results with ĨKM
J for the square on the

top row, and for the disc on the bottom row. The images are very similar to the

corresponding ones for a full array, and these for the square-shaped scatterer compare

very well with those we have seen for the screen model problem in Figure 7.
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Figure 20: Imaging with ĨKM
J for the square (top) and the disc (bottom), for J = 1, 2, 3, 4

when larr = 180 m, for f = 73 Hz.

To work with smaller arrays it emerges the need of imposing a threshold ε+ in the

course of computing S̃. All results that we present in the remaining of this subsection

were derived with ε+ = 0.02, which practically means that we project the array response

matrix Π̂ just on the trigonometric polynomials that are supported on A. In Figure 21

we plot the ĨKM images for the square on the top row, and the disc on the bottom row,

for array lengths larr = 160, 140, 120 m from left to right respectively. We observe that

the quality of the image deteriorates for smaller arrays, and specifically the images for

the disc exhibit narrower focusing to the the left endpoint of its horizontal diameter.
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Figure 21: Imaging with ĨKM for the square (top) and the disc (bottom), when

larr = 160, 140, 120 m, for f = 73 Hz and ε+ = 0.02.

We continue decreasing the length of the array until it covers the half of the

waveguide depth, i.e. larr = 100 m. The leftmost subplot in Figure 22 depicts the

ĨKM image for the square scatterer. This is a more ‘noisy’ image compared to those on

the top row of Figure 21, and the SNR has dropped. In order to improve the quality

of the image, we experiment with ĨKM,f (see (9)). The middle subplot in Figure 22 is
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derived by projecting on the first and second singular vectors of P̂, while for the one on

the right we project on the first and third singular vectors. The middle image exhibits

less noise and increased SNR, and it is focused mainly towards the endpoints of the of

the illuminated side, while the right image mainly focuses on its midpoint.
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Figure 22: Imaging with ĨKM (left) and ĨKM,f when projecting on singular vectors 1, 2

(middle) and 1, 3 (right), when larr = 100 m, for f = 73 Hz and ε+ = 0.02.

It seems that the limiting case, at least for the current setup, is to consider an array

with length equal to larr = 80 m. In the leftmost subplot of Figure 23 we display the ĨKM

image, which, although being quite ‘noisy’, seems to locate the square-shaped scatterer.

We then examine whether ĨKM,f may improve the quality of the image. Indeed, when we

project on the first three singular vectors of P̂ we obtain the middle image in Figure 23,

while the outcome of projecting on the first two singular vectors is the image on the

right. Both of them are slightly improved compared to the ĨKM image.
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Figure 23: Imaging with ĨKM (left) and ĨKM,f when projecting on singular vectors 1, 2, 3

(middle), and 1, 2 (right), for larr = 80 m, f = 73 Hz and ε+ = 0.02.

5.2. Depth-dependent sound speed

As a step towards a more realistic marine environment we assume that the speed of sound

in the water is a function of depth. Then we no longer have an analytic expression for

the eigenvalues and the vertical eigenfunctions Xn, and we compute them numerically

solving the associated Sturm-Liouville eigenvalue problem. However, the Xn’s still form

an orthonormal basis of L2[0, D], hence everything we did up to here carries over to

this case too. The sound speed profile that we consider in our experiments is shown in

Figure 24, and is adapted from [14] to fit the current waveguide setup.
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Figure 24: Depth-dependent sound speed profile for our waveguide.

On the top of Figure 25 we plot the ĨKM image for an array with length larr = 180 m.

In the bottom row, we show selective imaging results with ĨKM
J . All images are very

similar to the corresponding ones for the homogeneous case shown in Figures 19 and 20,

with its SNR values being slightly increased.
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Figure 25: Top: Imaging with ĨKM for the square. Bottom: Selective imaging with ĨKM
J ,

for J = 1, 2, 3, 4. (larr = 180 m, f = 73 Hz.)

For smaller arrays, as in the case of a homogeneous medium, we have to impose

a threshold ε+ to compute S̃. Here we adopt ε+ = 0.022, which again implies that

we project Π̂ just on the trigonometric polynomials that are supported mainly on A.

In Figure 26 we plot the ĨKM images for the square-shaped scatterer, for array lengths

larr = 160, 140, 120 m from left to right, respectively. All images illuminate the left

side of the scatterer; compare with the corresponding images for constant sound speed,

shown on the top row of Figure 21.
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Figure 26: Imaging with ĨKM for the square, for larr = 160, 140, 120 m, respectively,

f = 73 Hz and ε+ = 0.022.

Images shown in Figure 27 are extracted with an array length equal to larr = 100 m.

The ĨKM image on the left hand side, may be further improved using ĨKM,f . The middle

subplot depicts the ĨKM,f image that we obtain when we project on the first two singular

vectors of P̂, and the right one when we project on the singular vectors 1 and 3. Both

of them are improved compared to the ĨKM image exhibiting much higher SNR.
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Figure 27: Imaging with ĨKM (left) and ĨKM,f when projecting on singular vectors 1, 2

(middle) and 1, 3 (right), for larr = 100 m, f = 73 Hz and ε+ = 0.022.

Finally, we decrease the array length to larr = 80 m. Likewise the homogeneous

case, the ĨKM image shown on the left subplot of Figure 28 is quite noisy but it seems

to locate the object. Using ĨKM,f and projecting on the first three and first two singular

vectors of P̂ leads to improved images as shown in the middle and right subplots of

Figure 28, respectively.
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Figure 28: Imaging with ĨKM (left) and ĨKM,f when projecting on singular vectors 1, 2, 3

(middle), and 1, 2 (right), for larr = 80 m, f = 73 Hz and ε+ = 0.022.

The corresponding images for the disc-shaped scatterer for the depth-dependent

sound speed profile are analogous to those for the square, therefore we do not show

them here for sake of brevity.
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6. Conclusions

In this work we considered the problem of locating and imaging extended reflectors in

a waveguide using an active array of sensors. To image we use an imaging functional

introduced in [36], ĨKM, that is a variation of Kirchhoff migration where instead of

back propagating the array response matrix Π̂, we back propagate a weighted modal

projection of this, denoted P̂. For an array that spans the whole waveguide depth, the

definition of P̂ is straightforward and consists in integrating over the array Π̂ against

the modes, i.e., the eigenfunctions of the corresponding two-point vertical eigenvalue

problem in the waveguide. To analyse the properties of ĨKM we have considered a

simplified model problem where the scatterer is a vertical ‘screen’. By investigating this

problem we showed that there is a relation between the singular vectors of P̂ and the

prolate spheroidal wave functions. More precisely, we observed that when the screen is

fixed on the surface of the waveguide, we recover exactly the prolate spheroidal wave

functions. Although this is not the case for other positions of the screen, selective

imaging with ĨKM still exhibits a prolate-like behavior, in the sense that projection on

the singular vectors that correspond to the largest singular values results in an image

that focuses on the bulk of the screen, projection on singular vectors that correspond

to intermediate singular values results in an image that focuses on the endpoints of the

screen, while projection on singular vectors that correspond to very small in magnitude

singular values does not provide any information about the position and the size of the

screen.

The main contribution of this paper is that we have considered the case of arrays

with partial aperture that do not span the whole depth of the waveguide. In that case,

the main difficulty lies on the definition of the weighted modal projection P̂ which should

be adequately modified in order to preserve the nice properties we observed in the full

array case. Remark that in this case the modes are no longer orthonormal on the array

and we use instead the corresponding prolate (or prolate like) spheroidal wave functions

on the array to define P̂. As the array aperture decreases we propose to use only the

prolate functions whose support lies inside the array aperture and this introduces a

natural regularization to the imaging problem.

We have seen that for the screen model problem, imaging with ĨKM, even if we

remove half of the length of the originally full array, still creates images that are identical

to those created with a full array-aperture! Furthermore, ĨKM is able to locate the screen

with an array that has length equal to 10% of the waveguide’s depth.

We have also examined the performance of the proposed imaging functionals in

the presence of additive noise, in the case of extended reflectors such as a square and

a disc, as well as, for a non-homogeneous waveguide with a depth dependent velocity

profile. In all these cases, our numerical results suggest that we can successfully image

the scatterers even when we remove half of the array in length.
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