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Imaging Extended Reflectors in a Terminating Waveguide∗

Chrysoula Tsogka† , Dimitrios A. Mitsoudis‡ , and Symeon Papadimitropoulos§

Abstract. We consider the problem of imaging extended reflectors in terminating waveguides. We form the
image by back-propagating the array response matrix projected on the waveguide’s nonevanescent
modes. The projection is adequately defined for any array aperture size covering fully or partially
the waveguide’s vertical cross-section. We perform a resolution analysis of the imaging method and
show that the resolution is determined by the central frequency, while the image’s signal-to-noise
ratio improves as the bandwidth increases. The robustness of the imaging method is assessed with
fully nonlinear scattering data in terminating waveguides with complex geometries.
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1. Introduction. In this paper we consider the problem of imaging extended reflectors
in terminating acoustic waveguides with complex geometries, such as the one depicted in
Figure 1 (see section 2). Specifically, we assume that the waveguide Ω ⊂ R2 consists of a
semi-infinite strip ΩL− = (−∞, L) × (0, D) in which the speed of propagation may depend
only on the cross-range variable x, i.e., c = c(x), and a bounded domain ΩL+ in which the
speed of propagation may be fully inhomogeneous, i.e., c = c(z, x), and contains the reflector
that we wish to image. Although we restrict our presentation to the two-dimensional case,
the proposed imaging methodology can be extended in a straightforward manner to a three-
dimensional waveguide with bounded cross-section. We illustrate this with some numerical
results in the three-dimensional case.

Our data is the array response matrix for the scattered field collected on an array of
transducers which can play the dual role of emitters and receivers. This is a three-dimensional
data structure [Π̂]srl that depends on the location of the source ~xs, s = 1, . . . , Ns, the receiver
~xr, r = 1, . . . , Nr, and the frequency ωl, l = 1, . . . , Nf . The element Π̂(~xs, ~xr;ωl) denotes
the response recorded at ~xr when a unit amplitude signal at frequency ωl is sent from a
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point source at ~xs. Furthermore, we consider that the array is located in ΩL− , has an equal
number of sources and receivers Ns = Nr = N, and may span fully or partially the vertical
cross-section of the waveguide.

Imaging in waveguides is of particular interest in underwater acoustics [9, 19, 32, 17, 25,
29, 13, 7], where one wants to characterize sound speed inhomogeneities in shallow ocean
environments, with applications in sonar, marine ecology, seabed imaging, etc. Moreover,
imaging in waveguides is also applicable in inspections of underground pipes using acoustic
waves [23, 28] and in nondestructive evaluation of materials where elastic wave propagation
should be considered [6]. In any case, this is a challenging inverse scattering problem since in
a waveguide geometry the wave field may be decomposed in a finite number of propagating
modes and an infinite number of evanescent modes. The evanescent part of the wave field
is in general not available in the measured data because it decays exponentially fast with
the propagation distance. Our assumptions about ΩL− allow us to apply the technique of
separation of variables, so we let {Xn}∞n=1 denote the orthonormal eigenfunctions of the as-
sociated Sturm–Liouville eigenvalue problem in a vertical cross-section of ΩL− and let M be
the number of propagating modes.

In this paper we propose and analyze an imaging method that relies only on the propagat-
ing modes in the waveguide. The idea of formulating the inverse scattering problem in terms
of the propagating modes has been considered by several authors; indicatively we refer to the
relatively recent works [13, 27, 7]. In [13] the problem of reconstructing weak inhomogeneities
located in an infinite strip is addressed, and the solution of the linearized inverse scattering
problem is obtained using the spectral decomposition of the far-field matrix. We note that in
this case the measurements consist of both the transmitted and the reflected (backscattered)
field. In [27] the problem of selective focusing on small scatterers in two-dimensional acoustic
waveguides is considered, and the spectral decomposition of the time-reversal operator is an-
alyzed in this setting. In [7] the authors establish a modal formulation for the linear sampling
method (LSM) [12] for imaging extended reflectors in waveguides. The extension to the case
of anisotropic scatterers that may touch the waveguide boundaries is carried out in [23], where
both the LSM and the reciprocity gap method (RGM) [11] are studied theoretically and nu-
merically. The case of imaging cracks in acoustic waveguides is considered in [8] using LSM
and the factorization method [21]. In all the aforementioned works the waveguide geometry
is infinite in one dimension.

The case of a semi-finite, terminating waveguide such as the one considered here was first
studied to the best of our knowledge in [4] for electromagnetic waves in three dimensions.
In particular in [4] the forward data model was derived using Maxwell’s equations, and two
imaging methods were formulated: (a) reverse time migration (phase conjugation in the fre-
quency domain) obtained by applying the adjoint of the forward operator to the data, and
(b) an l1-sparsity promoting optimization method.

Our imaging approach is also inspired by phase conjugation and consists of back-
propagating the array response matrix projected on the M waveguide’s propagating modes. It
is important to note that the projection on the propagating modes is not an obvious procedure
when the array does not span the whole aperture of the waveguide. Following our previous
work [31] we define this modal projection adequately using the eigenvalue decomposition of
the matrix Aarr ∈ RM×M , whose mnth component is the integral over the array aperture of
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the product Xn(·)Xm(·). The orthonormality of Xn implies that Aarr reduces to the identity
matrix when the array spans the entire vertical cross-section of the waveguide. The properties
of the eigenvalues and eigenvectors of Aarr were analyzed in detail in [31] for the partial aper-
ture case. We show in particular that there is no loss of information and therefore no change
in the image as long as the minimal eigenvalue of Aarr remains above a threshold value ε, which
depends on the noise level in the data or equals the machine precision in the noiseless case.
As the array aperture decreases, the number of the eigenvalues that fall below ε increases, and
consequently the quality of the image deteriorates (see [31]).

To analyze the resolution of the proposed imaging method, we consider the case of a point
reflector and prove that the single frequency point spread function equals the square of the
imaginary part of the Green’s function. This is established using the Kirchhoff–Helmholtz
identity, which we derive for the terminating waveguide configuration. Furthermore, for the
simple geometry of a semi-infinite strip in two dimensions, a detailed resolution analysis is
carried out. This determines the resolution of the imaging method, which depends only on the
central frequency and equals half the wavelength in both directions. Although the bandwidth
does not affect the resolution, it does play an important role as it significantly improves the
signal-to-noise ratio of the image. This is shown theoretically and is also confirmed by our
numerical simulations.

Imaging in the terminating waveguide geometry allows for improvement in the reconstruc-
tions compared to the infinite waveguide case. This is because multiple-scattering reflections
that bounce off the terminating boundary of the waveguide provide multiple views of the re-
flector that are not available in the infinite waveguide case. To benefit from this multipathing,
we need to know or determine the boundary of the waveguide prior to imaging the reflector.
In this work we consider that the waveguide boundary is known. We refer the reader to [3]
for a study of source imaging in waveguides with random boundary perturbations, where it is
shown that uncertainty in the location of the boundaries can be mitigated using filters that
imply a somewhat reduced resolution. Moreover, it is shown in [3] that there is an optimal
trade-off between robustness and resolution which can be adaptively determined during the
image formation process.

The robustness of the proposed imaging method is assessed with fully nonlinear scattering
data obtained using the Montjoie software [24]. The use of this software allows us to model
wave propagation in waveguides with complicated geometries and study the reconstruction of
diverse reflectors. For all the examples considered, we have obtained significant improvement
in the reconstruction in the terminating waveguide geometry as compared to the infinite case.
We have also studied the robustness of the method for different array apertures ranging from
full to one-fourth of the waveguide’s vertical cross-section, and we assess its performance under
the effect of measurement noise. The quality of the image deteriorates as we decrease the array
aperture, but our imaging results remain very satisfactory even with an array aperture equal
to one-fourth of the full one. In most of the examples, we consider that the multistatic array
response matrix is available. However, the same method can also be applied to synthetic
array data obtained with a single transmit/receive element. We obtain good reconstructions
for this reduced data modality but for larger array apertures that cover at least half of the
waveguide’s width in the vertical direction.

The paper is organized as follows. In section 2 we present the formulation of the problem.
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In section 3 we describe our imaging methodology inspired by phase conjugation for both the
passive imaging configuration, which concerns imaging a source, and the active setup, which
refers to imaging a reflector. The resolution analysis is carried out in section 4 for single
and multiple frequency imaging. Finally, in section 5 we illustrate the performance of our
approach with numerical simulations in two and three dimensions.

2. Formulation of the problem. In this work, we study the problem of imaging extended
reflectors in a two-dimensional terminating waveguide, as shown in Figure 1. The reflector is
illuminated by an active vertical array A, composed of N transducers that act as sources and
receivers. The array may span the whole vertical cross-section of the waveguide or part of it.
The array transducers are assumed to be distributed uniformly, and densely enough; that is,
the interelement distance h is considered to be small—typically a fraction of the wavelength
λ. The term extended indicates that the reflectors are comparable in size to λ.

z

x

z = Lz = za

A

O

S

x = 0

x = D

ΩL+ΩL−

Figure 1. Schematic representation of the semi-infinite waveguide.

We also assume that the array measurements can be cast in the form of the so-called array
response matrix, denoted by Π̂. This is an N × N complex matrix whose (r, s) entry is the
Fourier transform of the time traces of the echoes recorded at the rth receiver when the sth
source emits a signal. In particular, we shall use the array response matrix for the scattered
field that is due to the presence of an extended reflector O located somewhere in the bounded
part of the waveguide delimited by the cross-section at z = L (see Figure 1). As usual, the
scattered field is determined by subtracting the incident field from the total field.

Specifically, we consider a Cartesian coordinate system (z, x), where z denotes the main
direction of propagation—called hereafter range—and x denotes the cross-range direction
taken to be positive downwards. Our terminating waveguide Ω consists of two subdomains:
the semi-infinite strip ΩL− = (−∞, L)× (0, D) and a bounded domain in R2 denoted by ΩL+ .
Let us also assume that all the inhomogeneities of the medium are contained in ΩL+ , while the
medium is homogeneous in the semi-infinite strip ΩL− (i.e., the wave speed may depend on the
range and the cross-range in ΩL+) and varies smoothly to the constant value that the speed
has for z ≤ L. Note that the assumption of a constant wave speed in ΩL− may be relaxed
by requiring the speed to depend on the cross-range variable x. However, to facilitate the
presentation in this paper we will consistently assume that ΩL− is filled with a homogeneous
medium.

The total field for our waveguide in the presence of a scatterer solves the scalar wave
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equation

(1) ∆ptot(t, ~x)− 1

c(~x)2

∂2ptot(t, ~x)

∂t2
= −f(t, ~x),

where ~x = (z, x) ∈ Ω and the source term f(t, ~x) models a point-like source with time-
harmonic dependence. Equation (1) is supplemented by homogeneous Dirichlet conditions on
the boundary of Ω. The scatterer is modeled as an acoustically hard scatterer with a homoge-
neous Neumann condition on ∂O, and a suitable outgoing radiation condition is assumed as
z → −∞. Moreover, we assume that the medium is quiet for t ≤ 0, i.e., ptot(t, ~x) = 0 for t ≤ 0.
Note that the scalar wave equation that we consider here is used quite often instead of the
full Maxwell’s or elastic wave equations since it captures the main features of the scattering
problem.

By applying the Fourier transform

(2) p̂tot(ω, ~x) =

∫
eiωtptot(t, ~x)dt

on (1), we obtain the Helmholtz equation for the total field

(3) −∆p̂tot(ω, ~x)− k2η(~x) p̂tot(ω, ~x) = f̂(ω, ~x), ~x ∈ Ω,

where ω is the angular frequency, k = ω/c0 is the (real) wavenumber, and η(~x) = c2
0/c

2(~x) is
the index of refraction. (Notice that η(~x) = 1 for all ~x ∈ ΩL− .)

Let also Ĝ(~x, ~xs;ω) denote the Green’s function for the Helmholtz operator (and the
associated boundary conditions) due to a point source located at ~xs = (zs, xs) ∈ Ω and for a
single frequency ω, i.e., Ĝ(~x, ~xs;ω) is the solution of

(4) −∆Ĝ(~x, ~xs;ω)− k2η(~x)Ĝ(~x, ~xs;ω) = δ(~x− ~xs).

Finally, let (µn, Xn) be the eigenvalues and corresponding orthonormal eigenfunctions of
the following vertical eigenvalue problem in the homogeneous part of the waveguide ΩL− :

(5) X ′′n(x) + µnX(x) = 0, Xn(0) = Xn(D) = 0.

Henceforth we shall assume that there exists an index M such that the constant value k2 of
the wavenumber satisfies in ΩL− :

λM < k2 < λM+1.

In other words, M is the number of propagating modes in Ω−L . Let us also denote the
horizontal wavenumbers in Ω−L by

(6) βn =

{ √
k2 − µn, 1 < n < M,

i
√
µn − k2, n > M + 1.

In what follows we will assume that the problems for the incident and the total fields,
which are governed by the Helmholtz equation and satisfy the boundary conditions in the
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perturbed semi-infinite cylinder described before, are well-posed. For example, in the case
where η(~x) = 1 everywhere in Ω, it has been proved in [15] that the problem for the incident
field is well-posed under the assumption that k2 6∈ Λ∪{µn}∞n=1, where Λ is the point spectrum
of the negative Dirichlet Laplacian acting on L2(Ω). This set Λ, which may be empty in some
cases, is known to be at most countable, with no finite accumulation point; see [20]. For the
total field there are examples in infinite waveguides that suggest existence of the so-called
trapped modes, i.e., nonzero localized solutions of the associated homogeneous problem; see,
e.g., [14].

3. Imaging. Our main objective in this work is to form images of extended reflectors
that lie somewhere in a terminating waveguide like the one described in the previous section.
The usual steps that one may follow to this end are to first identify a search domain S (see
Figure 1), discretize it using a grid, and then compute the value of an appropriate imaging
functional in each grid point in S. It is expected that these values, when they are graphically
displayed in the search domain, will exhibit peaks that indicate the presence of the reflector.

3.1. Imaging with a full aperture array. We shall first consider the easier case where
the array spans the whole vertical cross-section of the waveguide. Moreover, although we are
interested in imaging extended reflectors, we will first examine the so-called passive imaging
problem in order to motivate the use of the imaging functional that we will introduce next.

3.1.1. Passive imaging. Let us assume that a point source of unit strength, located at
the point ~xs = (zs, xs) ∈ Ω, emits a signal that is recorded on a vertical array A located
in ΩL− . Moreover, we assume that the array A = {~xr = (za, xr)}Nr=1 (za < L) spans the
whole vertical cross-section of the waveguide as illustrated in Figure 2. Our aim is to find the
location of the source. In this case the array response matrix Π̂ at frequency ω reduces to an
N × 1 vector, whose rth component equals the Green’s function evaluated at receiver ~xr due
to the source ~xs, i.e.,

(7) Π̂(~xr;ω) = Ĝ(~xr, ~xs;ω).

In what follows we consider a monochromatic source, and to simplify the notation we suppress
parameter ω from the imaging functional and the Green’s function. The dependence on ω will
be recalled in subsection 4.2 where imaging with multiple frequency data is considered.

z = Lz = za

A

x = 0

x = D

ΩL+

~xr

~xs

Figure 2. Passive imaging setup in a terminated waveguide.

The imaging functional that we propose to use is based on the concept of phase conjuga-
tion, which may be physically interpreted by virtue of the Huygen’s principle. As pointed out
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in [18], the Huygen’s principle states that a propagating wave may be viewed as a superposi-
tion of wavelets re-emitted from a fictitious surface with amplitudes proportional to those of
the original wave. In phase conjugation, which may be seen as the equivalent of time reversal
in the frequency domain, the re-emitted wavelets’ amplitudes are proportional to the complex
conjugate of the corresponding ones in the original wave. These remarks naturally lead one
to define the following classical phase conjugation imaging functional:

(8) Ipc(~ys) =

∫
A
Ĝ(~xr, ~xs)Ĝ(~ys, ~xr)dx,

where ~xr = (za, x) ∈ A and ~ys ∈ S. However, if we assume for a moment that apart from
recording the value of the field on the array we would be able to record its normal derivative
as well, then we may define the following imaging functional, which as we will show next has
very nice theoretical properties. Thus let

(9) I(~ys) :=

∫
A

(
Ĝ(~xr, ~xs)∇Ĝ(~xr, ~y

s)− Ĝ(~xr, ~y
s)∇Ĝ(~xr, ~xs)

)
· ν dx,

where ν is the outward-pointing unit normal vector to A. Of course this functional is more
complicated than phase conjugation, but the following proposition shows that in order to
compute I(~ys) in a terminating waveguide it is required to know only the values of the wave
field on the array and not its derivatives. We note that the form of the integral that appears
in the right-hand side of (9) is also met in the context of the so-called reciprocity gap method;
see, e.g., [11, 23].

Proposition 3.1 (Kirchhoff–Helmholtz identity). Assume that a point source is located in
the terminating waveguide described in section 2 (see also Figure 2) and that a vertical array
A, which spans the whole vertical cross-section of the waveguide, is located in ΩL−. Then, the
imaging functional defined in (9) satisfies the following Kirchhoff–Helmholtz identity:

(10) I(~ys) = Ĝ(~ys, ~xs)− Ĝ(~ys, ~xs) = 2iIm Ĝ(~y s, ~xs).

Moreover, we can show that

(11) I(~ys) = 2i

M∑
n=1

βn Ĝn(za, ~xs) Ĝn(za, ~y
s),

where Ĝn(za, ·), n = 1, . . . ,M , denote the first M Fourier coefficients of the Green’s function
(which correspond to the propagating modes) with respect to the orthonormal basis of L2(0, D)
that is formed by the vertical eigenfunctions Xn, i.e.,

(12) Ĝn(za, ·) =

∫ D

0
Ĝ((za, x

′), ·)Xn(x′) dx′.

Proof. See Appendix A.
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The passive imaging functional. Motivated by Proposition 3.1 we define here our imaging
functional for the passive case. Assuming that the array elements are dense enough, so that
we may think of the array as being continuous, we define

(13) Q̂n =

∫ D

0
Π̂
(
~xr;ω

)
Xn(x) dx, n = 1, . . . ,M,

to be the projection of the recorded field on the first M eigenfunctions Xn, n = 1, . . . ,M ,
of the vertical eigenvalue problem (5). We note that the definition of Q̂n in (13) entails an
idealized continuous array; this is convenient mainly for theoretical purposes. In practice, we
work with arrays that consist of discrete elements, and then we may define

Q̂n := h

N∑
r=1

Π̂
(
(za, xr);ω

)
Xn(xr), n = 1, . . . ,M,

where h is the array interelement distance.
Notice that using (7), we may write Qn as

Q̂n =

∫ D

0
Ĝ
(
(za, x), ~xs

)
Xn(x) dx = Ĝn(za, ~xs).

In view of (11) we define our imaging functional as

(14) Ip(~ys) :=

M∑
n=1

βnQ̂n Ĝn(za, ~y
s).

Note that the evaluation of Ip(~ys), for ~ys ∈ S, requires only recordings of the wave field.
Moreover, (10) and (11) ensure that

(15) Ip(~ys) = Im Ĝ(~y s, ~xs).

This last equation is a very interesting result and says that the quality of the focusing in
the image is determined by the imaginary part of the Green’s function in our waveguide.
Therefore, a resolution analysis for Ip will entail the study of the behavior of Im Ĝ.

Example 3.2 (imaging a point source). In order to provide the reader with a sense of how
Ip(~y s) behaves, we consider the simple case of imaging a source in a homogeneous terminating
waveguide that forms a semi-infinite strip, i.e., Ω = (−∞, R)× (0, D). We assume a reference
wavenumber k0 = π/10 that corresponds to a reference wavelength λ0 and take D = 10λ0,
while the vertical (terminating) boundary is placed at R = 27.5λ0. In Figure 3, we plot the
modulus of (14) for a source placed at ~xs = (19, 5)λ0 (shown in the plot as a white asterisk)
and for a single frequency f that corresponds to a wavenumber k = 0.973k0. This results in a
number of propagating modes M = 19. Finally, our search domain is S = [11.5, 26.5]× [0, 10],
where all distances are expressed in terms of the reference wavelength λ0.

We observe that the Ip(~y s) image, despite the presence of relatively high secondary peaks,
displays a clear peak around ~xs, which is a key property for an imaging functional.
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Figure 3. Normalized modulus of Ip for a point source located at ~xs = (19, 5)λ0 and for a single frequency
corresponding to k = 0.973k0. Imaging on the whole search domain (left), for search points fixed at the correct
range z = zs (middle), and at the correct cross-range x = xs (right). The green arrows indicate length equal to
λ/2, and a red asterisk points to the location of the source.

3.1.2. Active imaging. As a step toward the general case of an extended scatterer, we
will now deal with the active imaging problem where we are interested in locating a single
point scatterer of unit reflectivity that is situated at ~x∗ = (z∗, x∗), while the array A is like
the one in the passive imaging case as illustrated in Figure 4.

z = Lz = za

A

x = 0

x = D

ΩL+

~xr

~xs

~x∗ = (z∗, x∗)

Figure 4. Active imaging setup in a terminated waveguide.

Then, the (s, r) entry of the array response matrix,

Π̂(~xs, ~xr;ω) = k2Ĝ(~x∗, ~xs;ω)Ĝ(~xr, ~x
∗;ω),

corresponds to the scattered signal received at ~xr when the point reflector at x∗ is illuminated
by a unit amplitude signal emitted at frequency ω from a point source located at ~xs. In what
follows we suppress the multiplicative constant k2, and hence we assume that

(16) Π̂(~xs, ~xr;ω) = Ĝ(~x∗, ~xs;ω)Ĝ(~xr, ~x
∗;ω).

In the multiple frequency case we can also remove this factor by rescaling the data matrix
Π̂(~xs, ~xr;ω) to be equal to k−2Π̂(~xs, ~xr;ω).

Assuming again that the array is continuous, we define the projected response matrix Q̂
as

(17) Q̂nm =

∫ D

0

∫ D

0
Π̂(~xs, ~xr;ω)Xn(xs)Xm(xr) dxs dxr, n,m = 1, . . . ,M,

where, as before, Xn, n = 1, . . . ,M , are the first M eigenfunctions of problem (5).
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Figure 5. Normalized modulus of Ia for a point scatterer located at ~x∗ = (19, 5)λ0 and for a single
frequency corresponding to k = 0.973k0. Imaging on the whole search domain (left), for search points fixed at
the correct range z = z∗ (middle), and at the correct cross-range x = x∗ (right). The green arrows indicate
length equal to λ/2, and a red asterisk points to the location of the scatterer.

The active imaging functional. A natural generalization of the imaging functional that we
have proposed in the passive case is the active imaging functional

(18) Ia(~y s) :=

M∑
n=1

M∑
m=1

βnβmQ̂nm Ĝn(za, ~y
s) Ĝm(za, ~y

s),

defined for each point ~y s in the search domain S.
Note that by substituting (16) into (17) and using the expression of Ĝn given in (12), it

is easy to show that

(19) Q̂nm = Ĝn(za, ~x
∗) Ĝm(za, ~x

∗).

In turn, (18) now becomes

Ia(~y s) =
M∑
n=1

βn Ĝn(za, ~x
∗) Ĝn(za, ~y

s)
M∑
m=1

βm Ĝm(za, ~x
∗) Ĝm(za, ~y

s),

and Proposition 3.1 ensures that

(20) Ia(~y s) =
(

Im Ĝ(~y s, ~x∗)
)2
.

Thus we deduce that the imaging functional (18) for a point scatterer behaves like the
square of the imaginary part of the Green’s function.

Example 3.3 (imaging a point scatterer). To illustrate how Ia(~y s) behaves we consider a
point scatterer in the homogeneous terminating waveguide that we described in Example 3.2.
The scatterer is placed at ~x∗ = (19, 5)λ0, while all the other parameters are as in the previous
example. In Figure 5 we plot the modulus of (18). As one may immediately verify, this image
has a better signal-to-noise (SNR) ratio than the one shown in Figure 3. This is something to
be expected since Ia is just the square of Ip. We note that in this work we loosely interpret
the term SNR to refer to the ratio of the main peak to secondary peaks.
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We conclude by noting that so far we have proven that the point spread functions in the
passive and in the active imaging case are determined by the imaginary part of the Green’s
function when the array spans the whole vertical cross-section of the waveguide. Next, we
consider the partial aperture array case and present the modifications that have to be carried
out in the previous approach in order to extend its applicability in this more challenging setup.

3.2. Imaging with a partial aperture array. We now turn our attention to the case where
the array does not span the whole vertical cross-section of the waveguide. In [31] we presented
a way to construct a projection of the array response matrix that is well suited to that case.
Here we briefly describe the basic idea, necessary notation, and main results that appear in
[31] in order to apply them in our current setup.

Let Aarr be the M ×M matrix with entries

(21) (Aarr)mn =

∫
A
Xm(x)Xn(x)dx, m, n = 1, . . . ,M,

where M is the number of propagating modes in ΩL− . We have shown that Aarr is a real, sym-
metric Toeplitz-minus-Hankel matrix, and its eigenvalues νj , j = 1, . . . ,M , are clustered near
0 and 1; in fact if larr is the length of the array A, then approximately [larr/(λ/2)] of the νi’s lie
near 1, and the rest M−[larr/(λ/2)] are approaching zero. Let also wj = (wj1, w

j
2, . . . , w

j
M )T be

the corresponding orthonormal eigenvectors, which turn out to be discrete prolate (or prolate-
like) spheroidal sequences, and letW be theM×M orthogonal matrixW = (w1,w2, . . . ,wM ).
Then we introduce the trigonometric polynomials

(22) sj(x) =
M∑
i=1

wjiXi(x), j = 1, 2, . . . ,M.

Next, we project Π̂ onto the first M trigonometric polynomials sn, n = 1, . . . ,M , instead of
onto the eigenfunctions Xn. Specifically, we define Ŝ to be the M ×M matrix with entries

(23) Ŝmn =
1

νmνn

∫
A

∫
A

Π̂(~xs, ~xr, ω) sm(xs) sn(xr) dxs dxr, m, n = 1, . . . ,M.

It is easy to check that

(24)

∫
A
sk(x)Xm(x) dx = νk w

k
m, k,m = 1, . . . ,M.

Finally, we define Q̂ as

(25) Q̂ = W ŜW T .

For implementation aspects of this approach and for an extensive discussion on its perfor-
mance, we refer the reader to [31]. Notice that in the case of an array with full aperture the
matrix Aarr is just the identity matrix, sj(x) = Xj(x) and W = IM , and thus we recover the
definition of Q given in (17).

The following proposition shows that in the case of a point scatterer (active imaging) when
we use (23) and (25) to construct the matrix Q̂ we practically recover the same data as if we
were working with a full aperture array.
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Proposition 3.4. Let a single point scatterer of unit reflectivity be located at ~x∗ = (z∗, x∗) ∈
ΩL+ (see Figure 4). We assume that the array A is at range z = za � L, so that the
evanescent part of the wave field may be neglected. Then the projected array response matrix
Q̂ defined by (23) and (25) for a partial aperture array is equal to the projected matrix Q̂ for
an array that spans the whole vertical cross-section [0, D].

Proof. For a single point scatterer the (s, r) entry of the array response matrix Π̂ is given
by Π̂(~xs, ~xr) = Ĝ(~x∗, ~xs)Ĝ(~xr, ~x

∗); see (16). Moreover, note that for each ~x = (z, x) ∈ ΩL−

that satisfies the assumption z � L, the Green’s function may be written as

(26) Ĝ(~x, ~x∗) ≈
M∑
i=1

CiXi(x),

since the evanescent modes can be neglected for large propagation distances. Obviously Ci =
Ĝi(z, ~x

∗), where Ĝi(·, ~x∗) is defined in (12).
In the full aperture array case the orthonormality of the Xn’s immediately implies that

Q̂nm = CnCm; see also (19).
If the array has partial aperture, then (23) implies that

Ŝnm =
1

νnνm

∫
A

∫
A
Ĝ(~x∗, ~xs) Ĝ(~xr, ~x

∗) sn(xs) sm(xr) dxsdxr

=
1

νnνm

M∑
k=1

M∑
l=1

CkCl

∫
A
sn(xs)Xk(xs)dxs

∫
A
sm(xr)Xl(xr)dxr

(24)
=

M∑
k=1

Ckw
n
k

M∑
l=1

Clw
m
l .

Hence

Q̂nm
(25)
= (W ŜW T )nm =

M∑
j=1

wjn

M∑
i=1

sjiw
i
m =

M∑
j=1

wjn

M∑
i=1

M∑
k=1

M∑
l=1

CkClw
j
kw

i
lw

i
m

=
M∑
k=1

M∑
l=1

CkCl

M∑
j=1

wjnw
j
k

M∑
i=1

wilw
i
m =

M∑
k=1

M∑
l=1

CkCl(WW T )nk(WW T )lm

= CnCm,

where the last equality holds since W is orthogonal.

Remark 3.5.

(a) An analogous result to that stated in Proposition 3.4 is expected to hold also for
extended scatterers under the linearized Born approximation.

(b) Proposition 3.4 essentially says that when the array has partial aperture and we con-
struct Q̂ by means of (23) and (25), we do not lose any information, and the resulting
image is expected to be as good as if the array were spanning the whole vertical cross-
section of the waveguide. Of course, this holds ideally assuming, e.g., that the array
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is continuous and that all necessary computations are performed “exactly,” i.e., with
infinite precision. However, our analysis in [31] suggests that the minimum eigen-
value νmin of Aarr decays to zero as the length of the array decreases. As a result,
numerical instabilities occur when the length of the array is decreased, so that some of
the smaller-in-magnitude eigenvalues drop below some small-valued threshold ε, which
may depend on the noise level in the data or on the machine epsilon in the noiseless
case. In such a case, we propose to filter the matrix Ŝ by setting 1/νi = 0 for those
indices i that correspond to eigenvalues νi that satisfy νi < ε. For the details we refer
the reader to [31].

(c) In the case of reflectors that are in the vicinity of the array, we may include a number
of evanescent terms in the expansion (26) and adjust appropriately the size of the
matrices Aarr, Ŝ, and Q̂.

In the case of passive imaging with a partial aperture array, our methodology is modified
as follows: We first construct the vector Ŝ with entries

(27) Ŝn =
1

νn

∫
A

Π̂(~xr) sn(xr) dxr, n = 1, . . . ,M,

and then we define the vector

(28) Q̂ = W Ŝ,

where the matrix W is as before. It is straightforward to show that the projected array
response vector Q̂ for a continuous array that spans the whole vertical cross-section [0, D] is
equal to the vector defined by (27) and (28) in the case of a partial aperture array.

We conclude this section by proposing the following imaging algorithms for imaging one
or more extended sources or scatterers located in ΩL+ .

Algorithm 3.6 (passive imaging).
(a) Given the N × 1 array response vector Π̂ we compute the M × 1 projected vector Q̂

by means of (27) and (28).
(b) Next, we compute the imaging functional Ip given in (14) for each point of a predefined

search domain S, and we display graphically the modulus of these values.

Algorithm 3.7 (active imaging).
(a) Given the N ×N array response matrix Π̂ we compute the M ×M projected matrix

Q̂ by means of (23) and (25).
(b) Next, we compute the imaging functional Ia given in (18) for each point of a predefined

search domain S, and we display graphically the modulus of these values.

4. Resolution analysis. In this section we present a detailed resolution analysis for the
imaging functionals Ip and Ia defined in (14) and (18), respectively. As usual, this amounts
to studying the behavior of the point spread function (PSF) which is the imaging functional
for a point source (passive case) or a point scatterer (active case). In fact, we are going to
examine only the case of a point source since the results of the previous section ensure that
the PSF for a point scatterer is just the square of the PSF for a point source.
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Specifically, we restrict ourselves to the simple case of a homogeneous waveguide (η(~x) = 1)
which forms the semi-infinite strip (−∞, R)× (0, D). The Green’s function in this waveguide,
hereafter denoted by ĜR, may be found analytically; the derivation is given in Appendix B.
We have that for each ~y s = (z, x) ∈ Ω,

(29) ĜR(~ys, ~xs) =


∞∑
m=1

1

βm
eiβm(R−zs) sinβm(R− z)Xm(x)Xm(xs), z > zs,

∞∑
m=1

1

βm
eiβm(R−z) sinβm(R− zs)Xm(x)Xm(xs), z < zs,

where the point source is located at ~xs = (zs, xs), the vertical eigenpairs (µn, Xn) are equal
to

(30) µn = (nπ/D)2, Xn(x) =
√

2/D sin(
√
µnx), n = 1, 2, . . . ,

and the horizontal wavenumbers βn are defined in (6).
Then, as (15) suggests, the PSF for a point source is

Ip(~y s) = Im ĜR(~y s, ~xs) =

M∑
n=1

1

βn
sinβn(R− zs) sinβn(R− z)Xn(x)Xn(xs)

=
1

2

M∑
n=1

1

βn

(
cosβn(z − zs)− cosβn(2R− z − zs)

)
Xn(x)Xn(xs).(31)

4.1. Single frequency. The analysis in this subsection will be carried out for a monochro-
matic source. The following two propositions provide analytical estimates of the PSF when
we fix the range or the cross-range to that of the point source and look at a cross-section in
the other direction.

Proposition 4.1 (cross-range resolution). Assume that the search point is located at the
correct range, i.e., ~y s = (zs, x). Then, for M sufficiently large, it holds that

(32) Ip(zs, x) ≈ 1
4

[(
J0(αx)− J0(βx)

)
−
(
J0(
√
α2
x + γ2

x)− J0(
√
β2
x + γ2

x)
)]
,

where

(33) αx =
2π(x− xs)

λ
, βx =

2π(x+ xs)

λ
, γx =

4π

λ
(R− zs).

Proof. For ~y s = (zs, x), and in view of (30), (31) becomes

(34) Ip(zs, x) =
1

D

M∑
n=1

1

βn

(
1− cos(2βn(R− zs))

)
sin

nπx

D
sin

nπxs
D

.

Letting ξn = nλ/(2D), we may view the right-hand side of (34) as a Riemann sum
approximation of the integral

1

π

∫ 1

0

1√
1− ξ2

n

(
1− cos

(4π

λ
(R− zs)

√
1− ξ2

n

))
sin
(2πx

λ
ξn

)
sin
(2πxs

λ
ξn

)
dξn.
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Hence, using the simple trigonometric identity sinA sinB = 1
2(cos(A−B)− cos(A+B)), we

may approximate Ip as

Ip(x) ≈ 1

π

∫ 1

0

1√
1− ξ2

n

(
1− cos

(4π

λ
(R− zs)

√
1− ξ2

n

))
× 1

2

(
cos
(2π(x− xs)

λ
ξn

)
− cos

(2π(x+ xs)

λ
ξn

))
dξn,

where we have slightly extended the notation and used Ip here as a function of a single variable
(cross-range). Now, with αx, βx, and γx given by (33), Ip can be written as

Ip(x) ≈ 1

2π

∫ 1

0

1√
1− ξ2

n

(
1− cos

(
γx
√

1− ξ2
n

))(
cos(αxξn)− cos(βxξn)

)
dξn

=
1

2π

∫ 1

0

1√
1− ξ2

n

cos(αxξn) dξn −
1

2π

∫ 1

0

1√
1− ξ2

n

cos(βxξn) dξn

+
1

2π

∫ 1

0

1√
1− ξ2

n

cos(αxξn) cos
(
γx
√

1− ξ2
n

)
dξn

− 1

2π

∫ 1

0

1√
1− ξ2

n

cos(βxξn) cos
(
γx
√

1− ξ2
n

)
dξn

=: I1 − I2 + I3 − I4.(35)

The integrals Ii, i = 1, . . . , 4, in (35) may be evaluated analytically. We look at each term
separately. For example, it is known, [16, eq. (3.753.2)], that∫ 1

0

1√
1− ξ2

n

cos(αxξn) dξn =
π

2
J0(αx),

where J0(·) is the Bessel function of the first kind of order 0. Therefore,

I1 =
1

4
J0(αx) and I2 =

1

4
J0(βx).

Next, in order to evaluate I3 we change variables, letting θ = arcsin ξn, and use the fact that

J−1/2(t) =
√

2
πt cos(t) (see, e.g., [26, eq. (10.16.1)]) to write I3 as

I3 =
1

4

√
αxγx

∫ π/2

0
J−1/2(αx sin θ)J−1/2(γx cos θ)(sin θ)1/2(cos θ)1/2dθ.

Then, according to [16, eq. (6.683.2)], I3 = 1
4J0(

√
α2
x + γ2

x). Similarly, I4 = 1
4J0(

√
β2
x + γ2

x),
and the proof is complete.

Proposition 4.2 (range resolution). Assume that the search point is located at the correct
cross-range, i.e., ~y s = (z, xs). Then, for M sufficiently large, it holds that

(36) Ip(z, xs) ≈ 1
4

[(
J0(αz)− J0(βz)

)
−
(
J0(
√
α2
z + γ2

z )− J0(
√
β2
z + γ2

z )
)]
,
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where now

(37) αz =
2π(z − zs)

λ
, βz =

2π(2R− z − zs)
λ

, γz =
4πxs
λ

.

Proof. Since ~ys is placed at the correct cross-range, we now let x = xs in (31). Thus, by
a slight abuse of notation, Ip(z) as a function of the range variable equals

(38) Ip(z) =
1

D

M∑
n=1

1

βn

(
cosβn(z − zs)− cosβn(2R− z − zs)

)
sin2 nπxs

D
.

As in the proof of Proposition 4.1, we let ξn = nλ/(2D) and approximate the right-hand side
of (34) by an integral. Specifically, if αz, βz, γz are as in (37), and if we use that sin2A =
1
2(1− cos 2A), we may deduce that Ip(z) is approximated as

Ip(z) ≈ 1

2π

∫ 1

0

1√
1− ξ2

n

(
cos(αz

√
1− ξ2

n)− cos(βz
√

1− ξ2
n)
)

×
(
1− cos(γzξn)

)
dξn.(39)

The integrals of the various terms of (39) are of the same type as those in (35) and can be
evaluated analytically, resulting in (36).

First, we note that the approximate formulas (32) and (36) for the PSF when range
or cross-range, respectively, is fixed at the correct location of the point source suggest that
the term which mainly contributes to defining the resolution in the vicinity of the source is
J0(αx) or J0(αz), respectively. To illustrate this, in Figure 6 we superimpose the graphs of
(32) multiplied by 4 (blue solid line) and of J0(ax) (red dashed line) for a source located at
(zs, xs) = (19, 5)λ0 and for a single frequency corresponding to k = 0.973k0. The reference
wavenumber is k0 = π/10.
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Figure 6. Comparison between (32) multiplied by 4 (blue solid line) and J0(ax) (red dashed line) for
a source located at (zs, xs) = (19, 5)λ0 and for a single frequency corresponding to k = 0.973k0, where the
reference wavenumber is k0 = π/10. The green arrows indicate length equal to λ/2.
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Figure 7. Normalized absolute value of (32) versus cross-range (left subplot) and normalized absolute
value of (36) versus range (right subplot) for a point source located at (zs, xs) = (19, 5)λ0. Here the reference
wavenumber is k0 = π/10, and results are shown for a single frequency that corresponds to k = 0.973k0. The
green arrows indicate length equal to λ/2, and a red asterisk points to the location of the source.

Hence, if we define the resolution to be the width of the PSF at its half maximum, it is
immediate to check that both cross-range and range resolution are approximately equal to
λ/2.

Next, in Figure 7 we plot the absolute values of (32) (left subplot) and (36) (right subplot)
for a point source located at (zs, xs) = (19, 5)λ0. As before, the reference wavenumber is
k0 = π/10, and results are shown for a single frequency that corresponds to k = 0.973k0. The
analytical expressions we have derived for the cross-range and range resolution capture the
behavior of the imaging functional as we may check by comparing the plots in Figure 7 with
the middle and right subplots of Figure 3. The images shown in Figures 3 and 7 peak at the
right position of ~xs and, as predicted by the theoretical analysis, they have a resolution of λ/2
in both range and cross-range directions. We observe, however, that they are quite oscillatory
and that their SNR is not very satisfactory.

4.2. Multiple frequencies. In this subsection we will show that the SNR in our images
can be significantly improved using multiple frequencies. For most practical purposes, this is
something feasible since in many applications sources are not monochromatic but rather emit
pulses. The multiple frequency version of the imaging functional defined in (14) is simply the
summation over frequencies of the corresponding monochromatic functional,

(40) Ip(~ys) :=

Nf∑
l=1

Ip(~ys; fl) =

Nf∑
l=1

Ml∑
n=1

βn(fl)P̂n(fl) Ĝn(za, ~y
s; fl),

where fl, l = 1, . . . , Nf , are the discrete frequencies that span the available frequency interval
[fmin, fmax] in our data. Note that Ml depends on the index l since the number of propagat-
ing modes depends on the frequency fl. The definition of the corresponding active imaging
functional for multiple frequencies follows similarly.

Let us first look at the cross-range direction. To investigate the PSF behavior with multiple
frequencies in the ideal setting that we have examined thus far, we integrate (32) with respect
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to frequency f over an interval with bandwidth B. Specifically, letting Ψ(x;B) denote the
PSF for multiple frequencies at the correct range, we have

Ψ(x;B) =

∫ fmax

fmin

Ip(zs, x; f)df

≈ 1
4

∫ fmax

fmin

[(
J0(αx)− J0(βx)

)
−
(
J0(
√
α2
x + γ2

x)− J0(
√
β2
x + γ2

x)
)]
df

≈ 1
4

∫ fmax

fmin

J0(αx) df,(41)

where now the parameters αx, βx, and γx (given in (33)) are written in terms of the frequency
f as

αx =
2π

c0
(x− xs)f, βx =

2π

c0
(x+ xs)f, γx =

4π(R− zs)
c0

f,

where c0 is the constant wave speed, fc is the central frequency, and [fmin, fmax] = [fc −
B
2 , fc + B

2 ]. Note that we have numerically verified the validity of the last approximation in
(41) at least in the frequency range that we have examined. Now, let ζx := 2π

c0
(x− xs). Then

[1, 11.1.7],

(42) Ψ(x;B) ≈ 1

4

∫ fmax

fmin

J0(ζxf) df =
1

4ζx

(
Λ0

(
ζxfmax

)
− Λ0

(
ζxfmin

))
,

where

(43) Λ0(s) := sJ0(s) +
πs

2

(
J1(s)H0(s)− J0(s)H1(s)

)
,

Jn(·) is the Bessel function of the first kind of order n, and Hn(·), is the Struve function of
order n, respectively. (For the definition of the Struve function see, e.g., [1, Chap. 12].)

Let us consider a specific example. Assume a point source located at (zs, xs) = (19, 5)λ0,
a reference wavenumber equal to k0 = π/10, and a central frequency fc corresponding to
kc = 0.973k0. In Figure 8 we superimpose the modulus of the right-hand side of (42) for three
different bandwidths that are equal to B = 10%, 50%, and 100% of the central frequency fc.
All three are normalized with respect to their maximum value which, as may be immediately
inferred from (42), is equal to B/4. Moreover, we observe that resolution is determined by
the central frequency, while SNR is improved as the bandwidth increases. Specifically, when
B = 0.10fc the SNR seems to be of the same order as in the single frequency case (compare
the blue dashed-dotted line with the blue solid line in the left plot of Figure 7), it is slightly
improved when B = 0.50fc, and it is considerably improved by a factor of 2 for the larger
bandwidth B = fc. Let us quantify these observations. Obviously the global maximum of
|Ψ(x;B)| is attained at x = xs and is equal to B/4. Then, for the bandwidths considered in
the example referring to Figure 8, the SNR is determined as the ratio of the maximum value
to the second taller peak; assume that the latter is attained at ρ(B). Hence (42) and (43)
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Figure 8. Modulus of (42) for bandwidth equal to B = 0.10fc (blue dashed-dotted line), B = 0.50fc (red
dashed line), and B = 1.00fc (black solid line). The point source is placed at (zs, xs) = (19, 5)λ0, the reference
wavenumber is k0 = π/10, and the central frequency fc corresponds to k = 0.973k0.

imply that ζρ := 2π
c0

(ρ(B)− xs) satisfies the following equation:

fmax

(
J1(ζρfmax)H0(ζρfmax)− J0(ζρfmax)H1(ζρfmax)

)
−fmin

(
J1(ζρfmin)H0(ζρfmin)− J0(ζρfmin)H1(ζρfmin)

)
= 0.(44)

Moreover, it is immediate to check that since ζρ is a root of (44), then

Ψ(ρ(B);B) =
1

4

(
fmaxJ0(ζρfmax)− fminJ0(ζρfmin)

)
,

and hence SNR = B/|fmaxJ0(ζρfmax)− fminJ0(ζρfmin)|.
We compute numerically ρ(B) for the various bandwidths reported above, and our results

are summarized in Table 1.

Table 1
SNR in cross-range for various bandwidths.

B ρ(B) SNR

0.10fc 5.62521λ0 2.4981
0.50fc 5.61865λ0 2.9097
1.00fc 5.59433λ0 5.1513

The situation in the range direction is completely the same, so we do not present it here.
We observe the same behavior when we work with the actual imaging functional Ip. For

example, in Figure 9 we plot the modulus of Ip(~y s) for a point source located (as before) at
(zs, xs) = (19, 5)λ0, a reference wavenumber equal to k0 = π/10, and a central frequency fc
that corresponds to kc = 0.973k0. The left image is obtained when the bandwidth B ≈ 0.15fc
and the middle image when B ≈ 0.51fc, and the right image corresponds to B = 0.92fc. The
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Figure 9. Imaging with Ip for multiple frequencies for a point source placed at (zs, xs) = (19, 5)λ0. The
reference wavenumber equals k0 = π/10, and the central frequency fc corresponds to kc = 0.973k0. Left:
Bandwidth B = 0.15fc. Middle: B = 0.51fc. Right: B = 0.92fc.

advantage of using multiple frequencies is evident when we compare these images with the
left plot of Figure 3. Moreover, using a bandwidth of the same order as the central frequency
greatly improves the SNR in the right plot of Figure 9.

Finally, in Figure 10 we plot the (Im ĜR(~y s; ~xs))
2 which, as (20) suggests, is equal to

Ia(~y s). We examine the same cases as in Figure 9 and, while the noise levels are lower even
at the single frequency case (compare with the left plot in Figure 5), again have a clear SNR
improvement as the bandwidth increases. As we will see in the next section, this effect is of
greater importance when one deals with extended scatterers.
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Figure 10. Imaging with Ia for multiple frequencies for a point scatterer placed at (zs, xs) = (19, 5)λ0.
The central frequency fc is the same as in Figure 9. Left: Bandwidth B = 0.15fc. Middle: B = 0.51fc. Right:
B = 0.92fc.

To summarize, in this section we derived analytical formulas that approximate the PSF for
a point source in cross-range and range. We have concluded that both range and cross-range
resolution equal λ/2 in the monochromatic case. Moreover, we addressed the improvement in
SNR when using multiple frequencies, and we have shown that the resolution in the multiple
frequency case is λc/2, where λc is the wavelength that corresponds to the central frequency
of the available bandwidth. We note that the resolution analysis carries over to the partial
aperture case at least for array apertures such that the minimum eigenvalue νmin of Aarr is
larger than ε (see Remark 3.5).

5. Numerical experiments. In this section we focus on the active imaging case and assess
the performance of Ia for imaging extended reflectors in terminating waveguides. We start
with a model problem for which the scattered data is computed using the linearized Born
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approximation and then consider several extended reflectors for which the scattered data is
computed by solving the full wave equation. In all cases we will show imaging results obtained
using Ia with multiple frequencies. We first show numerical results for a full aperture array
and then consider the more challenging case of a partial aperture array.

5.1. Linearized Born scattered data. We consider a one-dimensional scatterer C, which is
a semicircle placed in a homogeneous waveguide with flat horizontal boundaries and a vertical
terminating boundary at z = R, i.e., Ω = (−∞, R)× (0, D). The response matrix is computed
using the Born approximation and is given by

(45) Π̂(~xs, ~xr;ω) =

∫
C
ĜR(~x, ~xs;ω)ĜR(~xr, ~x;ω)d~x,

with ĜR(~x, ~y;ω) as in (29). Note that in (45) we have suppressed the multiplicative factor
k2 that usually appears in its right-hand side. As already mentioned in subsection 3.1.2, this
can be performed in practice by rescaling the data matrix Π̂(~xs, ~xr;ω) as k−2Π̂(~xs, ~xr;ω).

Recall also that our imaging functional Ia is given by

(46) Ia(~y s) =

Nf∑
l=1

Ml∑
n=1

Ml∑
m=1

βn(fl)βm(fl)Q̂nm(fl) Ĝ
R
n(za, ~y

s; fl) Ĝ
R
m(za, ~y

s; fl),

where Q̂ is the projected array response matrix (see (23) and (25)) and ĜR
n, n = 1, . . . ,Ml,

is the projection of the Green’s function on the first Ml vertical eigenfunctions; cf. (12). To
demonstrate the effect of the terminating boundary of the waveguide on imaging, we compare
the results obtained when the same reflector is placed in a terminating and in an open-ended
(infinite-strip) waveguide. For both the open-ended and the terminating waveguide the array is
placed at za = 0 and spans the whole vertical cross-section of the waveguide. The semicircular
scatterer C is centered at (z∗, x∗) = (19, 5)λ0 with diameter b = 2λ0, and we use frequencies
f ∈ [fc − B/2, fc + B/2], where the central frequency fc corresponds to the wavenumber
kc = 0.975k0, the reference wavenumber, as before, equals k0 = π/10, and the bandwidth
is equal to B = 0.92fc. For the terminating waveguide, the vertical boundary is placed at
R = 27.5λ0.

To compute the data and the image for the open-ended waveguide, we simply replace
ĜR(~y, ~xs;ω) in (45) and (46) by the Green’s function for the infinite waveguide, hereafter
denoted by Ĝ0(~y, ~xs;ω). Recall that Ĝ0 is given by (see, e.g., [19])

(47) Ĝ0(~y, ~xs;ω) =
i

2

∞∑
m=1

1

βm
eiβm|z−zs|Xm(x)Xm(xs),

where ~y = (z, x) ∈ Ω and ~xs = (zs, xs), the vertical eigenpairs (µn, Xn) are as in (30), and
the horizontal wavenumbers βn are defined in (6).

In Figure 11 we plot the modulus of Ia for the case of an open-ended waveguide (plots
shown in the first and third columns) and a terminating waveguide (second and fourth
columns). We have used two different bandwidths. The images shown in the first and second
columns were obtained with bandwidth B = 0.51fc, while B was taken equal to B = 0.92fc



IMAGING REFLECTORS IN TERMINATING WAVEGUIDES 1701

B = 0.51fc
infinite

Range (λ
0
)

C
ro

ss
−

ra
ng

e 
(λ

0)

16 17 18 19 20 21 22

0

1

2

3

4

5

6

7

8

9

10

Range (λ
0
)

C
ro

ss
−

ra
ng

e 
(λ

0)

16 17 18 19 20 21 22

0

1

2

3

4

5

6

7

8

9

10

terminating

Range (λ
0
)

C
ro

ss
−

ra
ng

e 
(λ

0)

16 17 18 19 20 21 22

0

1

2

3

4

5

6

7

8

9

10

Range (λ
0
)

C
ro

ss
−

ra
ng

e 
(λ

0)

16 17 18 19 20 21 22

0

1

2

3

4

5

6

7

8

9

10

B = 0.92fc
infinite

Range (λ
0
)

C
ro

ss
−

ra
ng

e 
(λ

0)

16 17 18 19 20 21 22

0

1

2

3

4

5

6

7

8

9

10

Range (λ
0
)

C
ro

ss
−

ra
ng

e 
(λ

0)

16 17 18 19 20 21 22

0

1

2

3

4

5

6

7

8

9

10

terminating

Range (λ
0
)

C
ro

ss
−

ra
ng

e 
(λ

0)

16 17 18 19 20 21 22

0

1

2

3

4

5

6

7

8

9

10

Range (λ
0
)

C
ro

ss
−

ra
ng

e 
(λ

0)

16 17 18 19 20 21 22

0

1

2

3

4

5

6

7

8

9

10

Figure 11. Multiple frequency imaging with Ia of a semicircular reflector centered at (z∗, x∗) = (19, 5)λ0.
Specifically, f ∈ [fc − B/2, fc + B/2] with kc = 0.975k0, k0 = π/10. For the first two columns the bandwidth
is equal to B = 0.51fc, while a larger bandwidth B = 0.92fc is used for the two columns on the right. The
images shown in the first and third columns correspond to the open-ended waveguide, while those depicted in the
second and fourth correspond to the terminating waveguide. In the top row we plot the modulus of the image
normalized by its maximum value, while in the bottom row we use a threshold that sets to zero the values of the
image with normalized modulus less than ` = 0.4.

for the images shown in the third and fourth columns. These results are in perfect agreement
with our theoretical analysis which suggests that SNR improves as we increase the bandwidth.
In the remaining part of this section we fix the bandwidth to B = 0.92fc. In all plots, the
image is normalized with respect to its maximum value. Looking carefully at the images in
Figure 11, we observe that those in the open-ended waveguide exhibit a lower noise compared
to the corresponding ones in the terminating waveguide, while the latter offer a better re-
construction of the entire scatterer shape compared to those in the infinite waveguide, which
focus mainly around the midpoint of the semicircle. This can be seen more clearly in the
images displayed in the bottom row, where we threshold the normalized modulus of the image
values that are less than ` = 0.4. From now on we will refer to this process as thresholding
with parameter `.

5.2. Full wave scattered data. Next, we want to test our approach in imaging extended
scatterers without using any simplifying approximation for the forward model. To this end,
we now construct the array response matrix Π̂ by solving the wave equation (1) numerically,
with the aid of the high-order finite element C++ code Montjoie [24]. The originally semi-
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Figure 12. Sketch of a waveguide that is truncated near the array with a PML.

infinite waveguide is truncated with a perfectly matched layer (PML), as shown in Figure 12,
that ranges between −5λ0 and 0, a width sufficient to absorb waves propagating to −∞. We
discretize the finite computational domain using quadrangles, in which we use Q12 polynomials
(Qn = span{xlym, 0 ≤ l,m ≤ n}), while we use a fourth-order leapfrog scheme for the time
domain discretization.

The array imaging setup is similar to the one used in the previous subsection, with the
exception that now our vertical array is placed at za = 2λ0 and has a pitch h = λ0/4. First,
we consider the case of the semi-infinite strip, i.e., Ω = (−∞, R) × (0, D), where now the
terminating vertical boundary is located at R = 28λ0 and a disc-shaped scatterer of diameter
b = 2λ0 is centered at (z∗, x∗) = (20.5, 5)λ0. A Neumann condition is imposed on the circular
boundary of the scatterer. In the right subplot of Figure 13(a) (second image in the panel)
we plot the modulus of Ia normalized by its maximum value. As one may immediately verify,
even though the SNR of the image is a bit low, the location, size, and shape of the scatterer
are fully recovered. For the image in the left subplot (first image in the panel) we pretend
that we are not aware that the waveguide has a closed end, and we back propagate the same
data with the “wrong” Green’s function, i.e., the one for the open-ended waveguide. We
implement this by replacing in (46) the terms ĜR

m, ĜR
n by Ĝ0

m, Ĝ0
n, respectively, i.e., by the

Fourier coefficients of the Green’s function for the infinite waveguide (see (47)) with respect
to the orthonormal basis {Xn}∞n=1 of L2(0, D). As a result, only the left part of the scatterer
is recovered. In an attempt to improve the SNR of these images, in Figure 13(b) we plot the
corresponding images after thresholding with ` = 0.4.

As a second example, we place in the previously described waveguide a rhombus-shaped
scatterer of diameter b = 2λ0, centered at (z∗, x∗) = (20.5, 3)λ0. Figure 14 is analogous to
Figure 13. As before, in the left subplot of each subfigure we present the image obtained
when we back propagate our data with the Green’s function for the open-ended waveguide;
again we observe that only the left part of the scatterer can be reconstructed. When we use
the correct Green’s function, the corresponding image in the right subplot of each subfigure
exhibits a good reconstruction of the scatterer.

Finally, to demonstrate the robustness and the generality of our imaging approach we con-
sider a waveguide Ω with a more complex geometry. Specifically, the waveguide has constant
width in the cross-range direction equal to 10λ0 until z = 17λ0, and then it expands vertically
by 2λ0 on both sides and keeps a new constant width of 14λ0 until it is terminated by a
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(a) No threshold used.
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(b) Threshold equal to 0.4.

Figure 13. Imaging with Ia of a disc-shaped scatterer centered at (z∗, x∗) = (20.5, 5)λ0, for kc = 0.9733k0,
k0 = π/10, and B = 0.92fc. (a) Data is back propagated with the Green’s function for the open-ended (left
subplot) and the terminating waveguide (right subplot), where we do not use thresholding. (b) Same setup as
in (a) but using thresholding with ` = 0.4.
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(a) No threshold used.
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(b) Threshold equal to 0.4.

Figure 14. Imaging with Ia of a rhombus-shaped scatterer centered at (z∗, x∗) = (20.5, 3)λ0, for kc =
0.9733k0, k0 = π/10, and B = 0.92fc. (a) Data is back propagated with the Green’s function for the open-ended
(left subplot) and the terminating waveguide (right subplot), where we do not use thresholding. (b) Same setup
as in (a) but using thresholding with ` = 0.4.

vertical boundary located at z = 28λ0. The geometry of part of the waveguide is depicted
in the imaging results shown in Figure 15. A disc-shaped scatterer with diameter b = 2λ0 is
centered at (z∗, x∗) = (22.5, 7)λ0 and is depicted in Figure 15 with a white continuous line.

For this waveguide geometry, we do not have an analytic expression for the Green’s func-
tion Ĝ(~ys, ~xs), which is needed to form the image; hence we compute it numerically. To be
more precise, Ĝ(~ys, ~xs) is obtained by solving the wave equation in Ω in the absence of the
scatterer for all sources’ locations ~xs, s = 1, . . . , N, and the solution is stored for all search
points ~ys in the imaging window. The computations are performed in the time domain, and
we use FFT to transform the data in the frequency domain.

The imaging results are shown in Figure 15 where we plot on the left the normalized mod-
ulus of Ia without a threshold, and on the right using a threshold ` = 0.4. The reconstruction
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Figure 15. Imaging with Ia for a disc scatterer centered at (z∗, x∗) = (22.5, 7)λ0, for kc = 0.9733k0,
k0 = π/10, and B = 0.92fc. On the left we use no threshold, while on the right we have a threshold ` = 0.4.

is successful since it provides good estimates for the size and shape of the reflector.

5.3. Imaging with partial aperture. We consider now the more challenging problem of
imaging a reflector with an array that does not span the entire vertical cross-section of the
waveguide. As we have described in Algorithm 3.7, our imaging method requires the evaluation
of the functional Ia in each point of the search domain. Recall that in the case of multiple
frequencies, Ia is given in (46), and note that this expression applies for any array aperture
size. What alters is the way we construct the Ml ×Ml modal projected matrix Q, which in
the case of a partial aperture array uses the trigonometric polynomials sj , j = 1, . . . ,Ml, as
in (23) and (25) that account for the partial array aperture through the eigenvectors of the
array matrix Aarr.

We show in Figures 16 and 17 imaging results obtained for the same configurations as
in Figures 13 and 15, respectively. The difference is that here we consider array apertures
|A| = 0.75D, 0.5D, and 0.25D, where D is the total width of the waveguide in the cross-
range direction. As illustrated in these figures, the image quality deteriorates as the array
aperture decreases but only rather moderately. Indeed, comparing these images with the
corresponding ones in Figure 13, one may confirm that the images for |A| = 0.75D are almost
indistinguishable from the full aperture ones, and they are still quite good for |A| = 0.25D!

Next, we present an example of the performance of our algorithm under the effect of
measurement noise. Specifically, we consider the waveguide environment and the circular
scatterer that concern the results shown in Figure 13. We model measurement noise as in
[5] by adding to the response matrix Π̂ a noise matrix W (ω) ∈ CN×N with entries that are
normally distributed with mean zero and variance εpavg. Here ε is a positive constant and pavg

denotes the average power received per source, receiver, and frequency. Then it turns out that
the normalized noise power in dB is equal to −10 log10 ε. For details of the implementation we
refer the reader to [30]. In Figure 18, we present our results for two noise levels: 10 dB, shown
in the top row, and 0 dB, shown in the bottom. The length of the array decreases from full
aperture (leftmost column panel) to |A| = 0.25D (rightmost column panel). In all plots we
use a threshold ` = 0.4. Comparing these images with the analogous ones in Figure 16, where
there is no noise, we observe that noise for both levels does not seem to affect the quality of
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Figure 16. From left to right: Imaging with Ia for a disc scatterer centered at (z∗, x∗) = (21.5, 5)λ0 for
different array apertures |A| = 0.75D, 0.5D, and 0.25D, for kc = 0.9733k0, k0 = π/10, and B = 0.92fc. In
the top row of plots we use no threshold, while for the plots in the bottom row we have a threshold ` = 0.4.

the images. Note that the 0 dB level corresponds to very noisy data since in this case the
power of the noise is equal to the power of the signal. These results illustrate the robustness
of the proposed imaging methodology to uncorrelated measurement noise. For similar results
concerning the case of an infinite waveguide with a full aperture array, we refer the reader to
[30].

To synopsize, our numerical results indicate that the imaging method based on Ia can
be used for reconstructing extended scatterers that are located in terminating waveguides
of complex geometry. The data used is the usual array response matrix, which may cover
only part of the vertical cross-section of the waveguide. The array response matrix is then
projected on the propagating modes in an adequate way using the trigonometric polynomials
on the array aperture as in (23) and (25). We note that the same procedure can be followed for
synthetic aperture data collected by a single transmit/receive element. In the latter case the
data consists only of the diagonal entries of the array response matrix. We have numerically
observed that the image resolution remains the same in this case, while the SNR is worse;
this is expected since the number of measurements is reduced to N for the synthetic aperture
instead of N2 tabulated in the array response matrix. As an example, we show in Figure 19
full and partial aperture imaging results for the same imaging configuration as in Figure 16
but with a synthetic aperture that is formed with a single transmit/receive element.

Note that to form the image with Ia we need the Green’s function in the semi-infinite
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Figure 17. From left to right: Imaging with Ia for a disc scatterer centered at (z∗, x∗) = (22.5, 7)λ0 for
different array apertures |A| = 0.75D, 0.5D, and 0.25D, for kc = 0.9733k0, k0 = π/10, and B = 0.92fc. In
the top row of plots we use no threshold, while for the plots in the bottom row we have a threshold ` = 0.4.

waveguide, which can be computed numerically assuming that the geometry and background
velocity in the waveguide are known. This is necessary for complex geometries and/or propa-
gation media, in which case it is not possible to derive an analytical expression for the Green’s
function. We have also assessed the performance of the imaging method with fully nonlinear
scattering data and in the presence of additive uncorrelated measurement noise.

5.4. Imaging in a three-dimensional terminating waveguide. Finally, we consider the
problem of imaging an extended reflector in a three-dimensional terminating waveguide with
a bounded rectangular cross-section. The imaging setup is illustrated in Figure 20. Our
notation is as before, with z the range variable and x, y the two cross-range variables. The
vertical cross-section of the waveguide (xy-plane) is the rectangle (0, D) × (0, Y ), and the
terminating boundary is at z = R. Homogeneous Dirichlet boundary conditions are imposed
on all of the waveguide’s boundaries.

For a homogeneous waveguide with a simple geometry, such as the one in Figure 20, the
analytic expression for the Green’s function in the waveguide may be retrieved in a straight-
forward way from the analogous two-dimensional expressions. Consequently, the linearized
scattered acoustic field may be computed on the array of receivers A that span the bounded
cross-section of the waveguide. Imaging is performed by the functional Ia as in (18), with the
projected response matrix Q̂ defined by adequately modifying (17) so that the integrals are
taken over the two-dimensional array aperture.
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Figure 18. From left to right: Imaging with Ia for noisy measurements for a disc scatterer centered at
(z∗, x∗) = (21.5, 5)λ0 for different array apertures |A| = D, 0.75D, 0.5D, and 0.25D, for kc = 0.9733k0,
k0 = π/10, and B = 0.92fc. The normalized noise power −10 log10 ε is equal to 10 dB in the top row and 0 dB
in the bottom row. In all plots, we have a threshold ` = 0.4.

Without giving details of the computations, in the following figures we present as a proof
of concept some preliminary results that illustrate how this imaging methodology performs
in the three-dimensional case. In Figure 21 we show the reconstruction for a point reflector
located at ~x∗ = (19, 5, 10)λ0. The vertical cross-section has size [0, 10λ0]× [0, 20λ0], and the
terminating boundary is placed at z = 28λ0. This is a single frequency result for k = 0.973k0

(k0 = π/10) and essentially depicts the PSF of Ia in three dimensions. We observe that the
resolution is λ/2 in all directions as expected from our resolution analysis.

In Figure 22 we display the modulus of Ia for a square-shaped screen reflector. We observe
that the reconstructions are very good, and the shape of the reflector can be retrieved with
accuracy.

A more challenging example is considered in Figure 23, where we seek to reconstruct a
hemisphere with diameter b = 2λ0, centered at ~x∗ = (19, 5, 10)λ0. The reconstruction shown
in the right plot is very close to the true reflector’s geometry shown in the left plot. These
preliminary three-dimensional results are very promising. Of course, more experiments with
full wave scattered data and noise should be carried out to fully assess the performance of the
method in three dimensions. Also, we leave for future work the adequate modification of the
imaging functional for the partial aperture case in three dimensions.
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Figure 19. From left to right: Imaging with Ia for a disc scatterer centered at (z∗, x∗) = (20.5, 5)λ0 using a
synthetic aperture array with length |A| = D, 0.75D, and 0.5D, for kc = 0.9733k0, k0 = π/10, and B = 0.92fc.
In the top row of plots we use no threshold, while for the plots in the bottom row we have a threshold ` = 0.4.
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Figure 20. Schematic representation of the imaging setup in a three-dimensional waveguide.

6. Conclusions. We considered the problem of imaging extended reflectors in termi-
nating waveguides Ω ⊂ R2 that consist of two subdomains: the semi-infinite strip ΩL− =
(−∞, L)× (0, D) and a bounded domain ΩL+ . We also assume that the medium is homoge-
neous in the semi-infinite strip ΩL− , while it can be inhomogeneous in ΩL+ , which may also
contain the reflector to be imaged. This formalism allows us to image reflectors in waveguides
with complex geometries. We introduce an imaging functional that relies on the back propaga-
tion of the modal projection of the array response matrix adequately defined so as to account
for the array aperture. Our analysis shows that the resolution of the image is half a wave-
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Figure 21. Modulus of Ia for the zx-plane (top left), yx-plane (bottom left), and zy-plane (middle) for a
single frequency k = 0.973k0, k0 = π/10, for a point reflector placed at ~x∗ = (19, 5, 10) λ0. In the right plot we
show the three-dimensional reconstruction of the point reflector.
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Figure 22. Modulus of Ia for the zx-plane (top left), yx-plane (bottom left), and zy-plane (middle) for a
single frequency k = 0.973k0 for a square reflector [9, 11]λ0 × [4, 6]λ0 placed at z = 19λ0. In the right plot we
show the three-dimensional reconstruction of the square reflector.

length corresponding to the central frequency, while the SNR depends on the bandwidth. We
observe a net improvement in the reconstructions compared to the infinite waveguide case and
recover the reflector’s location, size, and shape with very good accuracy. This is intuitively ex-
pected since in the terminating waveguide we benefit from the reflections (multiple-scattering
paths) that bounce off the terminating boundary of the waveguide providing views of the
reflector that are not available in the infinite waveguide. Our numerical results illustrate the
robustness of the method for different array apertures ranging from full to one-fourth of the
waveguide’s depth. We also obtain good reconstructions for synthetic array data obtained
with a single transmit/receive element. Although the methodology was presented here in
the two-dimensional case, the extension of the methodology to a three-dimensional waveguide
with bounded cross-section does not present any conceptual difficulties.
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Figure 23. Imaging a hemisphere with diameter b = 2λ0, centered at ~x∗ = (19, 5, 10)λ0. The true reflector
is shown on the left. The modulus of Ia for a single frequency kc = 0.9733k0 is shown in the right plot.

Appendix A. The Kirchhoff–Helmholtz identity in a terminating waveguide. Let
Ω = ΩL− ∪ΩL+ be the terminating waveguide described in section 2; see Figure 1. We assume
that all the inhomogeneities of the medium are contained in ΩL+ and that the wave speed is
constant in ΩL− . Let also {µn, Xn}∞n=1 be the eigenvalues and eigenvectors of the negative
Dirichlet Laplacian −d2/dx2 in (0, D) given in (30). We will consistently assume that the
constant wavenumber, denoted by k, satisfies in ΩL−

µM < k2 < µM+1 for some index M,

and we let βn denote the horizontal wavenumbers in ΩL− that are given in (6). Hence M is
the number of propagating modes in ΩL− .

For any za < L, let A = {(za, x) : 0 ≤ x ≤ D} be the corresponding cross-section to the
range direction, and let ΩA denote the bounded domain Ω ∩ {(z, x) ∈ R2 : z ≥ za}. Note
that here we are using the symbol A to denote an artificial boundary, whereas in previous
sections it denoted the array. Then, the eigenpairs {µn, Xn}n allow us to define a Dirichlet-to-
Neumann (DtN) map (see, e.g., [15]), denoted by T , such that for each function u in suitable
function space,

(48) Tu(z, x) :=

∞∑
n=1

iβnun(z)Xn(x) = T1u(z, x) + T2u(z, x),

where

T1u(z, x) = i
M∑
n=1

√
k2 − µn un(z)Xn(x),(49)

T2u(z, x) = −
∞∑

n=M+1

√
µn − k2 un(z)Xn(x),(50)
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and

(51) un(z) :=

∫ D

0
u(z, x)Xn(x) dx

are the Fourier coefficients of u with respect to the orthonormal basis {Xn}n=1,2,....

Remark A.1.

1. On the artificial boundary A we may define the following norms of fractional order:

‖u‖Xs(A) :=

( ∞∑
n=1

(µn)s|un(za)|2
)1/2

<∞.

The spaces Xs(A), s ≥ 0, are then defined as the domain of (−d2/dy2)s/2, while
the space of negative order X−s(A) may be identified with the dual of Xs(A). The
notation is adopted from [2].
The function space Xs(A) coincides with Hs(A) for 0 < s < 1/2. For s = 1/2,

X1/2(A) may be identified with H
1/2
00 (A), the subspace of functions of H1/2(A) which,

when extended by zero, belong to H1/2(∂ΩA). For 1/2 < s ≤ 1, Xs(A) =
0

Hs (A) (see
[22, 2]). Then T is a bounded linear operator from X1/2(A) to X−1/2(A).

2. It is easy to show the following properties of the DtN operator. First,

(52)

∫
A
Tu v =

∫
A
Tv u,

and second, letting

(53)
T ∗u(z, x) = T ∗1 u(z, x) + T2u(z, x),

where T ∗1 u(z, x) = −i∑∞n=1

√
k2 − µn un(z)Xn(x),

it holds that

(54) Tu = T ∗u.

Now let Ĝ(·, ~xi) denote the Green’s function for the Helmholtz operator with Dirichlet
conditions on the boundary ∂Ω due to a point source located at ~xi = (zi, xi) ∈ ΩL+ for a
fixed single frequency. (Here we consider a single frequency, so when we refer to the Green’s
function we omit writing dependence on frequency.) Thus Ĝ(·, ~xi) solves the problem

−∆Ĝ(·, ~xi)− k2η(·) Ĝ(·, ~xi) = δ(· − ~xi) in ΩA,(55)

Ĝ(·, ~xi) = 0 on ∂ΩA \ A,(56)

∂νĜ(·, ~xi) = TĜ(·, ~xi) on A,(57)

where ν is the outward unit normal on A, and where the last boundary condition, which is
imposed on the artificial boundary A, accounts for the radiation condition.

In the following proposition we prove a reciprocity relation for the Green’s function.
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Proposition A.2. For any ~x1, ~x2 ∈ ΩA it holds that

(58) Ĝ(~x1, ~x2) = Ĝ(~x2, ~x1).

Proof. Let ~xi ∈ ΩA, i = 1, 2. Since Ĝ(·, ~xi) satisfies (55), we have for every ~y = (z, x) ∈
ΩA that

∆Ĝ(~y, ~x2) + k2η(~y) Ĝ(~y, ~x2) = −δ(~y − ~x2),

∆Ĝ(~y, ~x1) + k2η(~y) Ĝ(~y, ~x1) = −δ(~y − ~x1).

We multiply the first equation by Ĝ(~y, ~x1), the second by Ĝ(~y, ~x2), and subtract and integrate
the resulting equation over ΩA to obtain that∫

ΩA

(
∆Ĝ(~y, ~x2) Ĝ(~y, ~x1)− Ĝ(~y, ~x2) ∆Ĝ(~y, ~x1)

)
= Ĝ(~x1, ~x2)− Ĝ(~x2, ~x1).

Using the second Green’s identity and the Dirichlet boundary conditions (56), the equation
above may be written as

Ĝ(~x1, ~x2)− Ĝ(~x2, ~x1) =

∫
A

(∂Ĝ
∂ν

(~y, ~x2)Ĝ(~y, ~x1)− Ĝ(~y, ~x2)
∂Ĝ

∂ν
(~y, ~x1)

)
(57)
=

∫
A

(
TĜ((za, x), ~x2) Ĝ((za, x), ~x1)− Ĝ((za, x), ~x2)TĜ((za, x), ~x1)

)
dx

(52)
= 0.

Hence Ĝ(~x1, ~x2)− Ĝ(~x2, ~x1) = 0.

Now we are in a position to prove the following Kirchhoff–Helmholtz identity.

Proposition A.3 (Kirchhoff–Helmholtz identity). Let ~x1, ~x2 ∈ ΩA. Then

(59) Ĝ(~x1, ~x2)− Ĝ(~x1, ~x2) =

∫
A

(
Ĝ(~y, ~x1)∇Ĝ(~y, ~x2)− Ĝ(~y, ~x2)∇Ĝ(~y, ~x1)

)
· ν dx.

Moreover,

(60) Ĝ(~x1, ~x2)− Ĝ(~x1, ~x2) = 2i
M∑
n=1

βn Ĝn(za, ~x1) Ĝn(za, ~x2),

where the Fourier coefficients Ĝn(za, ·) are defined in (12).

Proof. Since Ĝ(·, ~x1) solves (55)–(57), it is immediate to show that Ĝ(·, ~x1) solves the
problem

−∆Ĝ(·, ~x1)− k2η(·) Ĝ(·, ~x1) = δ(· − ~x1) in ΩA,(61)

Ĝ(·, ~x1) = 0 on ∂ΩA \ A,(62)

∂νĜ(·, ~x1) = T ∗Ĝ(·, ~x1) on A.(63)



IMAGING REFLECTORS IN TERMINATING WAVEGUIDES 1713

Hence, for every ~y = (z, x) ∈ ΩA we have that

∆Ĝ(~y, ~x2) + k2η(~y) Ĝ(~y, ~x2) = −δ(~y − ~x2),

∆Ĝ(~y, ~x1) + k2η(~y) Ĝ(~y, ~x1) = −δ(~y − ~x1).

Now, we multiply the first by Ĝ(~y, ~x1), the second by Ĝ(~y, ~x2), subtract, integrate over ΩA,
and use the reciprocity property (58) to obtain that∫

ΩA

(
∆Ĝ(~y, ~x2)Ĝ(~y, ~x1)− Ĝ(~y, ~x2)∆Ĝ(~y, ~x1)

)
= Ĝ(~x1, ~x2)− Ĝ(~x1, ~x2).

Now, (59) results using the second Green’s identity and the boundary conditions (56) and
(62).

Moreover, from (59) and the DtN conditions (57) and (63) we deduce that

Ĝ(~x1, ~x2)− Ĝ(~x1, ~x2)

=

∫
A

(
Ĝ((za, x), ~x1)TĜ((za, x), ~x2)− Ĝ((za, x), ~x2)T ∗Ĝ((za, x), ~x1)

)
dx

(52)
=

∫
A

(
TĜ((za, x), ~x1)− T ∗Ĝ((za, x), ~x1)

)
Ĝ((za, x), ~x2) dx.(64)

Therefore, in view of (49) and (53), we get that

TĜ((za, x), ~x1)− T ∗Ĝ((za, x), ~x1) = 2i

M∑
n=1

βn Ĝn(za, ~x1)Xn(x).

Inserting the above in (64) we conclude that

Ĝ(~x1, ~x2)− Ĝ(~x1, ~x2) = 2i

∫ D

0

M∑
n=1

βn Ĝn(za, ~x1)Xn(x) Ĝ(za, x, ~x2) dx

= 2i
M∑
n=1

βn Ĝn(za, ~x1)

∫ D

0
Ĝ(za, x, ~x2)Xn(x) dx,

which completes the proof.

Appendix B. Derivation of ĜR. In this section we present the derivation of the Green’s
function ĜR for the Helmholtz operator when the terminating waveguide Ω is a homogeneous
(η(~x) = 1) semi-infinite strip. Specifically, Ω = (−∞, R)× (0, D). Then the Green’s function
ĜR(·, ~xs;ω) due to a point source located at ~xs = (zs, xs) ∈ Ω, for a single frequency ω, solves
the problem

−∆Ĝ(·, ~xs;ω)− k2Ĝ(·, ~xs;ω) = δ(· − ~xs) in Ω,

Ĝ(·, ~xs;ω) = 0 on ∂Ω.
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ΓR

z = R

~xs = (zs, xs) ~x′
s = (2R− zs, xs)

x = 0

x = D

z

x

Figure 24. Two sources placed symmetrically with respect to ΓR.

In order to derive an analytic expression for ĜR(·, ~xs;ω) we will use the method of images
[10]. With reference to Figure 24, we assume an infinite waveguide in the z-direction and add
a source at ~x′s that is symmetric to ~xs with respect to ΓR, i.e., ~x′s = (2R− zs, xs).

We then compute the field at a point ~y = (z, x) ∈ Ω as

(65) ĜR(~y, ~xs;ω) = Ĝ0(~y, ~xs;ω)− Ĝ0(~y, ~x′s;ω),

where Ĝ0(~y, ~xs;ω) denotes the Green’s function for an infinite waveguide. A normal mode
representation of Ĝ0(·, ~xs;ω) reads [19, 27]

Ĝ0(~x, ~xs;ω) =
i

2

∞∑
m=1

eiβm|z−zs|

βm
Xm(x)Xm(xs),

where {µn, Xn}∞n=1 are the eigenvalues and eigenvectors of −d2/dx2 in (0, D) given in (30),
and βn are the horizontal wavenumbers; see (6).

Then, (65) implies that

ĜR(~y, ~xs) =
i

2

∞∑
m=1

eiβm|z−zs|

βm
Xm(x)Xm(xs)−

i

2

∞∑
n=1

eiβn|z−2R+zs|

βn
Xn(x)Xn(xs)

=
i

2

∞∑
m=1

eiβm|z−zs| − eiβm|z+zs−2R|

βm
Xm(x)Xm(xs),

where z < R and 0 ≤ x ≤ D. Since z, zs < R, it turns out that z + zs − 2R < 0, and hence

ĜR(~y, ~xs) =
i

2

∞∑
m=1

eiβm|z−zs| − e−iβm(z+zs−2R)

βm
Xm(x)Xm(xs)

=


∞∑
m=1

i

2βm

(
eiβm(z−zs) − e−iβm(z+zs−2R)

)
Xm(x)Xm(xs), z > zs,

∞∑
m=1

i

2βm

(
e−iβm(z−zs) − e−iβm(z+zs−2R)

)
Xm(x)Xm(xs), z < zs.

(66)

Notice that

eiβm(z−zs) − e−iβm(z+zs−2R) = eiβm(R−zs)
(

eiβm(z−R) − e−iβm(z−R)
)

= −2i eiβm(R−zs) sinβm(R− z)



IMAGING REFLECTORS IN TERMINATING WAVEGUIDES 1715

and, similarly,

e−iβm(z−zs) − e−iβm(z+zs−2R) = −2i eiβm(R−z) sinβm(R− zs).

Therefore, (66) may also be written as

ĜR(~y, ~xs) =


∞∑
m=1

1

βm
eiβm(R−zs) sinβm(R− z)Xm(x)Xm(xs), z > zs,

∞∑
m=1

1

βm
eiβm(R−z) sinβm(R− zs)Xm(x)Xm(xs), z < zs.

(67)
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